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Topologically protected edge states in triangular lattices
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We describe the possibility for topologically robust edge states existing on interfaces of triangular lattices
which are supported by rotational symmetries that are sensitive to boundary conditions. Such states are trivial
from the perspective of Berry curvature, but result instead from an interplay between crystalline symmetries and
finite boundary effects. We show such states comprise a distinct topological phase, provided the gauge-dependent
symmetries are maintained. Such a model describes a number of recent bosonic experimental demonstrations on
triangular lattices, the physics for which has thus far eluded explanation.
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I. INTRODUCTION

Recent advances in topological physics have revealed a
wide class of nontrivial phases that can exist in condensed
matter systems, each relying upon maintaining or breaking
various symmetries [1]. These studies began with the quantum
Hall effect [2] and related time reversal symmetry (7)) broken
systems, but later were generalized to spin-based platforms
that preserve 7 symmetry [3]. Still more recently, many ex-
perimental demonstrations have explored the use of various
crystalline symmetries to create topological insulators (TIs)
[4], owing to their simplicity of implementation in bosonic
systems. Such crystalline symmetry-protected phases have
been demonstrated for systems in square lattices [5] and
Kagome crystals [6-8], and can be well characterized by
their various rotation eigenvalues at high symmetry points in
the Brillouin zone (BZ). In each case, such phases require a
minimum of orbital sites within a unit cell to define the given
rotational symmetry (e.g., four for the square lattice, three for
the Kagome, etc.); as such nonprimitive cells are required for
each.

These crystalline phases stand in contrast to the earlier
Chern [2], spin [3], and valley [9] phases, which are defined
by topological invariants computed in reciprocal space, as
they instead involve information of the real space defined
configuration of the system. The earliest example of Ref. [4]
showed how point group symmetries can induce a phase pos-
sessing gapless surface states, which are otherwise trivial in
the framework of earlier topological classification systems
[10,11]. More recent studies into the influence of crystalline
symmetries has yielded a plethora of new phenomena, in-
cluding higher order topological insulators [12] and surface
rotation anomalies [13,14]. These demonstrations have been
recently unified under more general notions of symmetries
based on point and space groups, commonly referred to as
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symmetry indicators [15-19], which rely on information of
the real space configuration as well as knowledge of the wave
functions at various high symmetry points in the BZ. These
techniques reveal a broad class of topologically nontrivial
structures in real material systems, which have been efficiently
tabulated [20,21].

Such phases are frequently referred to as topological, inso-
far as they define a global property of the band structure and
can be described by an invariant that changes discretely [15].
This naturally leads to a gauge dependence for the various
topological invariants that characterize them, in sharp relief
to those in other systems. This can be seen even in the one-
dimensional (1D) Su-Schrieffer Heeger model, where the Zak
phase depends on the choice of unit cell, though the difference
of two such choices is unique [22]. Throughout the paper we
will refer to “topologically protected” to include such gauge-
dependent systems, as well as obstructed atomic orbital states
[19].

Recently, a number of physical systems in photonics
[23,24] and phononics [25] have demonstrated a form of
unidirectional propagation for bosons on triangular lattices
within a defect line. Such platforms have zero Berry curvature
[5,26], and as such appear trivial from the spin and valley
perspectives. We will show via a tight-binding model that
these systems can in fact be described by a nontrivial topology
based on a specific flavor of symmetry indicator that focuses
on rotational symmetries [19]. Specifically, in this article we
demonstrate that a triangular lattice with Cs,-symmetric hop-
ping terms can lead to topologically protected edge states.

II. TIGHT-BINDING MODEL AND RECIPROCAL SPACE
CHARACTERISTICS

We adopt a Hamiltonian on a triangular lattice with the
hopping texture as shown in Fig. 1(a), given generically as

H=-> ticlc; +He. (1)
(ij)
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FIG. 1. Triangular lattice in a three-band model. (a) Diagram of
unit cell in chosen basis, with 7, bonds shown in blue and 7_ bonds
in red. (b)—(d) Band structure of the first three bands of the (b) pure
triangular lattice with equal hopping § = 0 (r, = t_), (c) nontrivial
gapped hopping 6 < 0 (t, > t_), and (d) Dirac-cone hopping § > 0
(ty <t).

Here (ij) denotes nearest neighbor hopping from site i to
site j, and f; = 1 & § describes the texture of the hopping
terms. We will initially set the on-site potential to zero and
limit the analysis to the region of —1 < § < 1. We adopt a
three-site basis as illustrated in Fig. 1(a) with kernel of the
Bloch Hamiltonian

0 hj, hi
H@é)=hno 0 =35, )
hs hy 0

where

hip =t_ + 1™ + t_eith/2+V3/2k)

iy = 1 4 1,232 g it /2=3/2k)

h23 =1 + t+e*l’(kx/2*«/§/2ky) + t_e*l'kx.

The model obeys time reversal symmetry, and falls into
class Al of the Altland-Zirnbauer classification [10,11]. Note
that the form of H is similar to Kagome lattices [6], but
here each site has six nearest neighbors, rather than four.
This has an important consequence in that the low energy
band structure is degenerate at all k values along the M-K
boundary for § = 0, rather than the Dirac degeneracy seen
in Kagome models. These extra band degeneracies are not
protected by rotational symmetry, as the little group of the
wave vector at the M point for the lattice (C;,) does not
permit any two-dimensional (2D) irreducible representations
[27] (see Appendix A for more details). Nevertheless, this
difference from Kagome or honeycomb models manifests in
the symmetry properties of the Berry phase and how they
determine the existence of edge states.

In the ideal triangular lattice with unity potential 6 = 0 we
have the degenerate band structure seen in Fig. 1(b). If we
modify the hopping such that § > 0, a band gap is opened for
the lowest band, as shown in Fig. 1(c). For the opposite case of

6 < 0, a Cs,-protected Dirac cone is found, shown in Fig. 1(d).
In the following sections we analyze these three cases indi-
vidually, and show how the latter, gapped case possesses an
interesting question not readily solved with reciprocal space
techniques.

A. Ideal § = 0 case

The ideal triangular lattice under a tight-binding (TB) for-
malism [Fig. 1(b)] does not have a band gap, and therefore
cannot demonstrate any edge states independent from bulk
states. However, as we will further detail in Sec. V B, such
systems do in fact possess a fundamental band gap within
bosonic systems.

Figure 2(a) shows the Berry curvature distribution for
Eq. (2) under this case. From the combination of 7 and inver-
sion symmetry Z, the curvature is pinned to zero for all values
within the Brillouin zone, except those along the points of
degeneracy, where the non-Abelian form of the curvature must
be used to determine the values. Here we employ the Abelian
form, and as a result we observe rapid numerical fluctuations
along the BZ edges that average to zero [5].

B. Dirac § < 0 case

The Dirac case [Fig. 1(d)] is reminiscent of the valley Hall
physics of graphene [9], but here a difference arises in how a
gap can be introduced. Namely, if a staggered on-site potential
is applied, a gap will appear near K/K’, but in doing so the
point group is lowered to Cj, rather than the Cs, of a valleylike
model. This causes the location of the Berry curvature sin-
gularity to shift from K/K’, deteriorating any resulting edge
states as the “valleys” are no longer at 7T -linked locations
in the BZ. To show this in reciprocal space, Figure 3 shows
the evolution of the Berry curvature as the alternating on-site
potential is increased. Here the definition for “alternating” is
0, +d, —d for sites 1, 2, and 3 of the unit cell as labeled in
Fig. 1(a).

It can be observed that as soon as the on-site potential d is
nonzero, the Dirac cone is gapped and the singularities form
well-defined peaks at the K/K' valleys [Fig. 3(a)]. However,
as d is increased [Figs. 3(b)-3(d)], we see the two peaks
drift from the valleys, destroying the valleylike behavior and
the valley-projected Hamiltonian will not have a well-defined
valley Chern number [28].

C. Gapped § > 0 case

The gapped case, with § > 0, is different. It is clear that
doing so reduces the point group from Cg, down to C3,,, which
permits nonzero Berry curvature via breaking of inversion
symmetry [Fig. 2(b)]. Unlike effective Hamiltonians defined
near the K/K' point in valley models, however, the degeneracy
being lifted is along the outer boundaries of the BZ rather than
the point degeneracy at K/K’, and so the resulting Berry phase
accumulates along the M-K path with a threefold rotational
symmetry, provided the correct gauge is chosen [29] (see Ap-
pendix B for details). As such, standard valley-polarized states
cannot appear in this case either. As we will see, however,
such a situation does indeed give rise to surface states, but of
a different nature.
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FIG. 2. Berry curvature distributions for the (a) pure triangular, § = 0, (b) nontrivial triangular, with a typical gapped value § = 0.4, and
(c) Dirac conelike, § = —0.4 cases. In (a) there is rapid fluctuations along the degeneracies at the boundary of the reduced BZ (noted by the
black dotted line) which average to zero. For (c), a small staggered on-site potential of 10~* was added so the sign of the singularities at K/K’

were uniquely defined.

III. SYMMETRY INDICATORS
OF ROTATIONAL INVARIANTS

As the Berry curvature of the gapped (§ > 0) phase does
not reveal the topological properties, we turn instead to the
symmetry properties of each band by the behavior of their
eigenstates at the high symmetry points (HSPs) when acted
on by various rotation operators [19]. Importantly, unlike the
gauge-invariant behavior of the Berry curvature, such sym-
metry behaviors can be influenced by transformations to the
real space configuration of the system. More specifically, for
a given n-fold rotation operator 7,, we seek the expectation
(FH(IT)) = (u(IT1)|7,|u(IT)) for an eigenstate u evaluated at the
HSP I1. In the ideal triangular lattice the relevant rotations are
73 and 7, but within the modified hopping terms (which break
Cg, symmetry) we will only need 73 [15].

In the chosen basis, the threefold rotation operator 73 can
be represented as

0 0 1
=1 0 o 3)
01 0

Kx

To evaluate the topology, we must calculate (7 (IT)) for each
occupied band at certain HSPs, which we here set to the lowest
band only (1/3 filling), as we are concerned with edge states
within the first band gap. From the theory of [15,19], we can
then evaluate the topological invariant associated with this
rotation operator, given as a vector of two integers

2= (K7 K], @
where [K1(3)] and [K2(3)] are given as
(K] = #K —#T5), 5)

and #I1§) is the number of occupied bands with eigenvalue
¥ = 2i=D/3 " p=1,2, 3, forthe HSPs IT = K, T.

For the sake of generality, we note that to include the
degenerate cases of § <0, we may evaluate x® by de-
termining the eigenvalues of the overlap matrix S (IT) =
(u;(IT)|7,|ux (I1)), where j, k = 1,2, 3 are the band indices.
However, this will naturally give the n-band manifold’s invari-
ant, which is not of interest here (see Appendix C for further
details).

In our case we have simplified the expressions from [19]
to the case of threefold symmetry. In the case of the sixfold

Kx

FIG. 3. Berry curvature distribution for the Dirac-like case of § < 0 with variable staggered on-site potential d for (a) d = 107, (b) d =
0.5, (c) d = 1.5. In each figure a representative value of § = —0.4 is used. We see that as the staggered potential is increased, the distribution
becomes asymmetric, with K/K’ singularities becoming poorly defined.
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symmetric case of Fig. 1(b) (valid only at § = 0) the rota-
tional invariant is instead x© = ([M;Z)], [K1(3)]), which can
be found to be trivial by considering an expanded six-site
basis TB model. Likewise, any symmetry properties for other
invariants on this basis are also trivial for the 1/3 filling case.
At the critical point of § > 0, however, we observe a phase
transition where x* = (—1, 1), indicating a nontrivial topol-
ogy. We note here that such a phase is topologically equivalent
to the h(zi) primitive generator Hamiltonian from Ref. [19],
which possesses an identical y .

If we rotate the site assignments of the Bloch Hamiltonian
Eq. (2) by C,, or, equivalently, perform a C, rotation on the
Brillouin zone which swaps the K and K’ points, the band
structure remains identical to that shown in Fig. 1(d). The
difference manifests when considering the symmetry indica-
tor: in this new rotated basis, we find x® = (=1, 0) from
the differing phase of the K’ point. This new Hamiltonian
is topologically equivalent to the h(zi) primitive generator of
Ref. [19]. This implies that a geometrical rotation can result
in differing topological phases, which is the mechanism that
several recent studies [23-25,30] have exploited to realize
unidirectional modes in bosonic platforms, which will be dis-
cussed in Sec. V B.

IV. EDGE STATES ON FINITE LATTICES

The symmetry indicators show that the Hamiltonian Eq. (2)
is that of a nontrivial phase protected by C; rotation, but it
does not guarantee the existence of edge states for all finite
edges. Namely, the nonzero value of the x® indicator here
denotes a protected fractional charge per unit cell which can
exist along suitably chosen boundaries, rather than the exis-
tence of edge states pinned within the bulk band gap (see
also Sec. VI). Finite boundaries that break the straight-line
edge geometry will not support nontrivial edge states. This
is important as the existence of the edge states is therefore
gauge dependent, being removable by a change in coordinate
system or redefinition of the finite boundary, similar to those
seen in Kagome lattices [7]. Figure 4 shows the spectrum
of a finite ribbon of the triangular lattice with § =0.4, a
boundary that maintains the required symmetry along the top
and bottom, and open boundary conditions. We see two edge
modes appearing within the bulk band gap, caused by the
nonzero topological invariant x®. The modes are pinned to
the top and bottom of the ribbon. The two edge states are here
shown at differing energies, which is a natural result of the
edge termination being different (i.e., the unit cell is not C;
symmetric, so the top and bottom edge must necessarily have
differences in the hopping texture).

We note here that at § = 0 there can be no edge states at
any energy, but for finite § # O they will emerge from the bulk
spectrum, including the Dirac-like § < O case. In such cases,
as well as the nontrivial § > O case studied here for small §,
the edge states exist within a continuum of bulk states. Only
when the finite dispersion of the nontrivial § > 0 case permits
a complete band gap (here for § = 0.16) will fully isolated
states [31] bound to the edges appear from the continuum
(see Appendix D). Figure 5 gives an energy diagram as a
function of § for a finite lattice, showing these isolated modes
appearing for § > 0.

FIG. 4. Ribbon spectrum of the modified triangular lattice with
open boundaries on the top and bottom, showing edge modes within
the bulk band gap, using a normalization of a = 1. The color bar
shows the expectation value of the position operator in the vertical
(y) dimension with with red (blue) denoting modes localized on the
top (bottom) of the ribbon. Bulk bands appear black, being fully
delocalized.

0 m 2n

V. SYMMETRY INDICATORS FOR BOSONIC
IMPLEMENTATIONS

A. Numerical example in photonics

A key benefit of the symmetry indicator methods used here
is that they are readily applied to other physical systems via
simulation. This is detailed in [25], where a surface acoustic
wave platform results in the same indicators for phonons. As
a further demonstration of this, here we show the results for a
2D photonic crystal model, similar to those studied in [23,24].

As a computational aside, to transfer the idea of symmetry
indicators to such a platform where the wave function is de-
fined continuously over the simulation domain, the definitions
for the symmetry indicators must be suitably altered. Namely,
to compute the various rotational eigenvalues, the procedure
can be simply performed via a scalar multiplication of the
2D eigenfield by the relevant complex number correspond-
ing to the rotational eigenvalue. This results in another 2D
eigenfield, and the value of the indicator element becomes a

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

6

FIG. 5. Edge mode existence as a parameter of the difference
in hopping strengths § for a finite triangular lattice. Pairs of modes
emerge from the bulk band once the band gap is opened large enough.

165403-4



TOPOLOGICALLY PROTECTED EDGE STATES IN ...

PHYSICAL REVIEW B 106, 165403 (2022)

0

r

K r

FIG. 6. Photonic band structure for the first three bands of a 2D
silicon (¢, = 11.9) photonic crystal in a triangular lattice. Inset is the
structure, where here a = 20 mm, r = 4.6 mm. The gray indicates
silicon, while the white is air.

sum of each of these fields that match the original eigenfield.
For additional details and a walk through of this process, see
Appendix E.

For a 2D photonic crystal in a triangular lattice composed
of circular holes (for TE modes) or rods (for TM modes), we
may define the unit cell first by placing the circular hole/rod
at the center of a hexagon, as show in the inset to Fig. 6,
which shows a representative photonic band structure calcu-
lation; note the high degree of similarity to the nontrivial
case analyzed in the main text. The simulation results are
done using Ansys HFSS FEM solver using a unit cell size
of a = 20 mm, air hole radius » = 4.6 mm, and a thin (< A)
height of & = 0.2 mm, with the background material being

Cell r

(a)o (b).
(e) I (f)

silicon (¢, = 11.9). By symmetry, an equally valid choice of
unit cell is one where the hole/rod is shifted, which will keep
the band structure visually unaltered. Such a choice along with
the original symmetrical choice is illustrated in Fig. 7.

For the first case, the unit cell has point group Cg,, which
by symmetry constraints on the Berry curvature is trivial.
Likewise, under this orientation the 2D charge polarization
(see Sec. VI) is trivial. To compute the symmetry indicator,
Fig. 7 shows the H, phase profile at I', M, and K, which are Cg,
C,, and C; rotationally symmetric, respectively. From these,
we compute the symmetry indicators (which can intuitively
be seen by visualizing the rotation of the phase plot) and find
x©® = (0, 0), giving a trivial phase. Hence, from this unit cell
definition we do not expect any nontrivial behavior, analogous
to a pure triangular lattice on a single site basis, with the
difference of the existence of a band gap.

For the second case, we shift the unit cell center, thereby
placing the phase vortex observed from the edges to the center.
This shift results in the point group reducing to Cs,, and we
find the resulting symmetry indicator to be x® = (=1, 41),
matching that found for the nontrivial case of the TB model.
Performing a C, rotation on the unit cell results in x® =
(—1, 0), again matching the TB case.

B. Connections to recent experiments

The TB Hamiltonian Eq. (2) describes an idealized spinless
particle on a triangular lattice, where topological band gaps
can be induced by tuning of the hopping amplitudes. Despite
this idealization, the phenomenon of greatest relevance to
experiments is the influence of the crystalline symmetry upon
surface states. From the previous section, it can be seen that
analogous surface states can be introduced into a photonic
system, where the symmetry of the array of holes results in
edge states along suitable boundaries.

M K
(06(0
(g) . (h)@

FIG. 7. Computation of symmetry indicators from 2D photonic crystal phase plots. For the two definitions of unit cell (a) and (e), the right
three columns plot the 2D phase of the H, eigenfield at the indicated HSPs.
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These numerically predicted edge states have been demon-
strated experimentally in both photonic [24] and phononic
[25] platforms. In these and other triangular lattice systems,
the usual definition of the unit cell is the high-symmetry
choice of Fig. 7(a), with crystalline Cs, symmetry, which
would naively map to the § = 0 gapless case of Eq. (2).
However, as seen in the previous section, the gauge freedom in
unit cell choice permits a lower-symmetry unit cell [Fig. 7(e)],
which reveals a nontrivial topology in analogy to the C3, mod-
els analyzed here. An important difference between Eq. (2)
and such systems, however, is the atomic orbital basis used in
TB models does not include the influence of the nonlocalized
nature of classical waves [32], which are instead faithfully
represented by a basis of generalized Wannier functions [33].

Despite these differences, such a basis possesses distinct
symmetry properties that match those of the atomic orbital
basis employed here [34], and the Hamiltonian Eq. (2) yields
a similar band structure to that of 2D photonic crystal realiza-
tions [23]. The only major physical difference is that in the
bosonic implementations a flipped copy of the lattice is used
to form an interface, rather than open boundaries; as shown
here such a rotation results in gauge-dependent phases, and
as such also leads to edge states. Such an arrangement also
provides a band gap material on both sides of the finite edge,
useful for experiments.

Furthermore, the symmetry indicator method employed
here has been extended to the phononics case in a similar
system [25], and even to photonics on surface wave metallic
systems [30]. These platforms have illustrated the high degree
of robustness to perturbations of the system, including sharp
angle turns and defects along the boundary.

Care must be made when applying Eq. (2) to directly model
such bosonic systems for the aforementioned issues of the
basis choice. Similarly, within the experimental models in
Refs. [24,25] the states manifest as propagating edge states,
though the symmetry indicators used here merely protect the
accumulation of edge charges. Propagating states can be ex-
pected in such experimental platforms by the inherent setting
of a fixed k vector by the excitation source used, coupled with
the nonzero group velocity observed in their band structure.
Such states can therefore be removed from the band gap
or have their propagation direction flipped by a continuous
surface perturbation, and can be compared to those seen in
Fig. 4. Nevertheless, the numerical example of the previous
section shows a strong connection behind the symmetries
involved and the resulting behavior of finite systems. To
construct a more direct mapping between the physics of the
bosonic systems and Hamiltonians on triangular lattices as
studied here, it would be possible to define a triplet of orbitals
on the same lattice site, which can open a band gap without
reducing the symmetry in real space [35].

VI. WILSON LOOP SPECTRA AND 2D CHARGE
POLARIZATION DESCRIPTION

The discussion in prior sections employs the use of
symmetry indicators as an efficient and general means of
understanding the topology of the system, but this is not the
only technique. Alternatively, the Wilson loop spectra can
be used to determine the location of the Wannier centers,

21
o
= 9
(x>
—1IT1
— 211 '
-0.5 0 0.5

ky/mt

FIG. 8. The Berry phase computed from the Wilson loop spectra
of the § > 0 TB model. It is pinned to 1/3 the full winding for all
values across the BZ.

which gives the fractionalized charge of the lattice. This ap-
proach, like the Berry curvature, requires diagonalization of
the Hamiltonian for all values within the BZ, and as such
is much more computationally demanding for large systems.
Unlike the curvature, however, the Wilson loop allows for
another topological invariant, the charge polarization [36], to
be computed. Here the principle is that displacement of the
Wannier center from the center of the (real space) unit cell
indicates a charge imbalance that is compensated by edge
states on a finite sample. This section will illustrate how the
Wilson loop spectra can be alternatively used to explain the
behavior of the triangular lattice system studied here. We will
primarily follow the preliminaries of [37], which has further
details for the interested reader.

First, for generic tight-binding Bloch Hamiltonian H (k)
with eigenstates u',f defined for band n, we first define the
non-Abelian Berry connection A as

A (k) = i(uk | Vi |uk). (©6)

The (continuum) Wilson loop can then be described a path
ordered exponential

W(l) = T exp <—i /dl : A(k)), 7
)

where [ denotes a closed loop in reciprocal space and T
denotes path ordering. The eigenvalues of Eq. (7) encode the
non-Abelian Berry phases of the Bloch bands considered. For
calculation purposes, we may determine the Berry phases of a
specific TB model by defining a discrete version as

0(k;) = —Imlog ]_[ det M i . )
J

Here we have introduced an overlap matrix M to handle cases
of degeneracy, whose elements are defined as

My = (™ o). ©

The result of computing Eq. (8) (normalized by 2r) is
the location of the Wannier center for a given k;. For the
nontrivial § > 0 case of the triangular lattice, we find the
Berry phase as shown in Fig. 8. It is important to note that here
the coordinate axes are selected such that the lattice sites are
displaced symmetrically about the origin [e.g., as in Fig. 1(a)].
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The charge polarization depends on the choice of unit cell, but
the location of the Wannier center with respect to the physical
lattice does not (see Appendix B for more details).

We can see that the first band is pinned to +1/3 a full BZ
winding. As we are concerned with the first band gap, the
important behavior is contained in the fractionalized nature
of the first band alone. This indicates a nontrivial topology,
which we may formalize via the 2D charge polarization given
by

1
27TLW Lw

wdl. (10)

Here we have defined the polarization normalized by the
electric charge e, and, based on symmetry constraints, reduced
the 2D polarization to a single term (as it is equal in both

directions for our case). In what follows, we have chosen the

lattice vectors a; = X, ay = %f( + V;y. From this, we find the

nontrivial band to have charge of 4-1/3 for the configuration in
Fig. 1(a) [e.g., corresponding to XG) = (=1, +1)]. For the C;-
rotated version [corresponding to x® = (=1, 0)], we instead
get —1/3.

As expected, we recover the same topological protection
as that found via the symmetry indicators, albeit with greater
computational expense. However, the usefulness of the indi-
cators extends still further, as there is a strong connection
between the symmetry indicators found and the bulk charge
polarization itself. Namely, for x©®), we may consider the
polarization as given by [19]

PO = 2([K] +2[K]). an

Noting again that we have dropped the vector component
here (as both elements will be equal), and that we are still
defining the polarization normalized to e, we can now quickly
compute the polarization for our model without the full BZ
information used in the Wilson loop approach. We find a
polarization of 4+1/3 for the x® = (=1, 4+1) case, and —1/3
(or, equivalently, +2/3) for the x® = (-1, 0) case.

Such a connection to the charge polarization makes the
existence of the edge states seen in Fig. 4 clearer: the states
arise due to the fractionalized charge per unit cell, which are
pinned to specific locations within the unit cell. When the
boundary is chosen such that the charges align, a surface state
can appear, but can be removed by a surface deformation.

Lastly, we note that higher order states can be induced
within the triangular lattice model presented here using suit-
able modifications to the hopping structure, in an analogous
fashion to those seen in Kagome lattices. This can be predicted
by the corner charge (normalized by e) [19],

0% = 1K) mod L, (12)

corner

which is equal to +1/3 and 0 for the x® = (=1, +1) and
x® = (—1,0) cases, respectively. As the bulk charge po-
larization of Eq. (2) is nonzero for the gapped phase, there
can be no fractionalized corner charges, but the Hamilto-
nian can nonetheless can be combined with other crystalline
models that cancel the polarization (the so-called nominal
corner charges). Under such a combination, we expect to see
localized corner states appearing for finite lattices with the
arrangement shown in Fig. 1(a), but not its C, rotated copy.

This can be understood by considering the edge geometry of
a finite lattice with C3 symmetry, which naturally leads to
the Wannier centers appearing on the corners for only one
orientation of the unit cell (see the Supplemental Material of
[19] for further details).

VII. CONCLUSIONS

We have demonstrated that a triangular lattice chosen with
a three-site basis and a specific hopping texture is topologi-
cally nontrivial, and can support states bound to finite edges
that maintain a straight line termination. The model does
not possess nonzero valley or inversion-symmetry topological
invariants, and is instead described by a symmetry indicator
arising from rotational eigenvalues. Our model deepens our
understanding of a number of recent experimental demon-
strations related to anisotropic wave/energy propagation and
verifies their real space topological origin.
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APPENDIX A: GROUP THEORETIC CONSTRAINTS FOR
IDEAL TRIANGULAR LATTICES

Here we give a brief derivation of the constraints on the
triangular lattice states based on group theory, much of which
can be found in [27].

If we consider a Hamiltonian on a triangular lattice [Eq. (2)
of the main text], the space group is P6mm. To understand
the allowable states for the periodic case, we can impose a
potential that retains the sixfold rotational symmetry, as in
the case of § = 0 of the main text. In such cases we can then
analyze the behavior of the little group of the wave vector at
the various high symmetry points (HSPs) [38].

At the I point, the little group coincides with the point
group, which is Cg,. This group contains 1D and 2D irre-
ducible representations (irreps), and as such implies at I" we
expect isolated as well as doubly degenerate modes. Likewise,
at K the little group is Cs,, which has both 1D and 2D irreps.
Conversely, at the M point the little group becomes C,,,, which
only contains 1D irreps, and therefore any degeneracy is not
required by symmetry.

From the above, we may conclude that the degeneracy
along the M-K path shown in the main text is not protected
by symmetry, and may be broken by considering differing
models of the potential. Indeed, employing perturbation the-
ory to the nearly free electron model with finite potential
will separate the bands at the M point [27]. Nevertheless, a
key aspect to the symmetry indicator method used here is
that the resulting topological invariant is maintained for these
alternative models, as it only requires eigenvectors at HSPs
and the preservation of rotational symmetry.
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APPENDIX B: GAUGE CHOICES FOR SYMMETRY
INDICATOR METHODS

For the application of the symmetry indicators from, e.g.,
[19], it is worth digressing on the importance of the gauge
condition required, particularly for simple TB models like
those employed here. Namely, there are two characteristics
required to compute the values, the first being the generalized
symmetry constraint

P i) = h(R,K), (B1)

where £ is the (Bloch) Hamiltonian, 7, is the desired n-fold
rotational operator, and R, is the corresponding 2D rotation
matrix acting on the crystal momentum k. The second con-
straint is that placed by the HSPs II for which the relation

R, =1 (B2)

holds within the periodic BZ. The combination of the above
two conditions can be combined to show that, in order for
the symmetry indicators to be defined, the rotational operator
must commute with the Hamiltonian, [7,, 2] = 0.

The above conditions are innocuous enough, but there is
some subtly with respect to “gauge choices,” which can result
in unexpected or erroneous conclusions. By gauge, here we
mean both with regards to the gauge choice of the Hamiltonian
in the Bloch basis, as well as the “physical” gauge of the real-
space Hamiltonian.

The first issue, the Hamiltonian’s gauge choice, is seldom
discussed, but has genuine consequences, particularly in tight-
binding models [39]. When defining a TB model, there are
two main methods, the so-called “periodic gauge,” wherein
the wave function is expanded as a sum of Bloch functions,
each containing their own phases,

. Z ¢ (k)ek-(R+aj)|¢Ryj>’ (B3)

1
VN &

where a; denotes the atomic location of orbital site j, and
the “Bloch” gauge, where the all atomic sites are considered
together with a single phase,

- 1
Yk /i

The Bloch choice is the one most familiar from textbook
examples, as it is both simpler to write down (hopping terms
within the unit cell are real numbers) and has the benefit
of being periodic in the BZ, h(k + G) = h(k) for reciprocal
lattice vector G. However, the “periodic” choice is often more
physical with respect to features like the Berry curvature [29]
(in the main text this gauge was used for Figs. 2 and 3 for
this reason). It is likewise often more natural for calculations
involving electrical polarization, as in the Wilson loop spec-
tra. The conventions are related by a unitary transformation,
but there are added consequences depending on what further
calculations are desired.

For the purposes of symmetry indicators, the Bloch gauge
is necessary, as condition (B2) cannot be met without the peri-
odicity of the wave functions. As different numerical software
packages for creating TB models differ in their gauge choice,

Y e R gr ). (B4)
R,j

FIG. 9. Alternative choice of unit cell, with identical eigenspec-
tra but differing symmetry indicators.

the user may arrive at incorrect answers if the wrong gauge
is chosen. This can also lead to great confusion since the
initial symmetry constraint (B1) will hold regardless of gauge
choice, as will all physical observables.

The second issue, the “physical gauge” is more easily
understood pictographically, but is no less important for the
proper investigation of a given model. By physical, we mean
the coordinate system chosen in real space, and the resulting
arrangement of the atomic sites. This is often not an issue for
most studies, but in cases like the triangular lattice studied
here, there can be a great difference between two otherwise
identical models.

For example, suppose instead of the unit cell chosen in the
main text [Fig. 1(a)], the choice shown in Fig. 9 is made. This
unit cell has (in the Bloch gauge), the Hamiltonian kernel

0 hy hy
H@)=|h2 0 h35], (B5)

hiz hs 0
with  hpp =1, + 1 e 1 e ®/20V32k) g — 4
1_e~ihe/2=V3/2h) 4t pilhe/24+33/2k) and hoy =ty +

t_e—i(kX/Z—ﬁﬂky) + t etk

This Hamiltonian, being related to the one used in the main
text by a translation of the real space coordinates, has identical
eigenspectra as Eq. (2). However, a significant difference dis-
tinguishes them: Eq. (B5) has fully trivial symmetry indicators
for all 4.

This can be understood by referring to the Wilson loop
spectra as analyzed in Sec. VI. As the Wilson loop spectra
gives the charge polarization, we can see that the center of
charge for this model resides at the midpoint between the three
lattice sites linked by blue bonds. For the model considered
in the main text, this results in the charge polarization being
split between three locations on the outer edge of the unit cell,
while in the case of Eq. (B5), it is symmetrically located at
the center. From Eq. (11) we can conclude that this immedi-
ately gives trivial symmetry indicator values. This latter gauge
dependency was also exploited recently for waveguiding ap-
plications [30].

The above discussion illustrates that, while powerful, sym-
metry indicators are sensitive to gauge/unit cell decisions,
and can cause issues when care is not made in their use. It
is also worth stressing here that this gauge dependence may
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seem to contradict the notion of “topological protection” in
the traditional sense of the quantum Hall effect. Systems, as
discussed here, differ from these others in a number of ways
(particularly on the termination structure), but the key feature
that permits the topological nomenclature here is that they
are still a phase defined by a global behavior, and can be
characterized by a discretely changing parameter linked to the
existence of edge states.

APPENDIX C: COMPUTATIONAL ASPECTS
OF SYMMETRY INDICATORS
FOR TIGHT-BINDING MODELS

The symmetry indicator method employed here has gained
in popularity recently, but is often difficult to follow how
authors make use of it, and there are few resources to assist
those who wish to perform the calculations themselves. Vari-
ous rigorous arguments and proofs for these methods can be
found in, e.g., [19]. This technique is computationally very
efficient, as it does not require diagonalization at all k£ points
(like the Chern number), and less mathematically involved
than methods like the Z, invariant. This section aims to fill
in the more numerical details involved in such calculations,
and hopefully make clear what is being presented.

To begin with, for tight-binding models the first step is
to calculate the eigenvectors of the Hamiltonian directly at
the relevant HSPs of the BZ. For 2D models, this merely
involves the diagonalization of at most three matrices (e.g.,
I'y M, K for triangular and I', X, M for square lattices), giving
eigenvectors u;(IT) for each HSP IT and band j.

The second step is to then compute the expectation value of
the desired rotational operator when acting on each computed

J

(1 (TD)[ 7 [ua (TT))

s = | el ()

(g (T 1y (IT)

for a given manifold of M degenerate bands at HSP I1. The
eigenvalues of this matrix provide the desired expectation
values of the rotational operator.

Once the expectation values are computed, the final step
is to count the number of each eigenvalue and subtract the
number located at I, written in general as

[13]

This final step is less clear notationally, as indicated by the
use of the # sign to mean “count the number of.” The above is
merely stating that to find the integer valued invariant element
[1'[;,”)] for an n-fold rotation at HSP IT that has eigenvalue
T, we have to count the number of bands with that same
eigenvalue at I1, count the number of bands with that eigen-
value at I', and subtract the two counts. Note that in doing
so we are forced to decide where to set the Fermi level (or,
to extend the discussion to bosonics, the desired frequency),
which determines the number of bands we must count the
eigenvalues for.

— () (n)
= #ITW — 47, (C4)

(1 (TD)| 7y |u3 (TT))

eigenvector. Construction of such operators is simple within
the TB formalism, and are merely matrices that permute the
given orbital sites. The eigenvalues of each rotational operator
are always given as

ny == p=1,2,3,....n (C1)
for an n-fold rotational operator. We therefore know in ad-
vance that the computation of the given symmetry indicators
will involve counting up these values, and any computation
that differs from them is likely an error (commonly noticed
due to improper handling of degeneracies, which will be cov-
ered shortly, or a gauge error, which will be considered in
Appendix B).

Computing the expectation for a single isolated band in-
volves a simple inner product, reproduced from the main text
as

(P (T1)) = (e(TD)| P u(TT)). (C2)
In the above, u(IT) denotes the eigenvector computed in the
first step for the HSP I1, and 7, is the matrix representation
of the rotational operator of order n, with the size of 7, being
determined by the number of basis elements of the vectors.

The above equation will give one of the eigenvalues of 7,
which may then be used for the later steps in computing the
invariant. However, it is often the case, especially for more
complex band structures, that degeneracies occur the the HSPs
in question. As mentioned in the main text, the resolution to
this is to consider the overlap matrix formulation of Eq. (C2),
given as

(a1 (TD)[7 |ps (TT))
(C3)

{1y (TD)[ 7 uapg (T1))

Each calculation of the above results in a single integer.
Such integers alone do not constitute the topological invariant
per se, here called x, but rater are the elements thereof.
The previous step can be done for any allowed eigenvalue and
rotational operator, but, as shown at length in [19], the total
number of distinct combinations that are needed to properly
define x™ is much smaller. Specifically, we may write the
required values as [19]

= (X7 (], [m5"]),

(X7 (5] 7)),
= (M) [&7]).

1@ = (K] [K57]).

The above can describe all n-fold rotationally symmetric 2D
systems for the allowed n = 2, 3, 4, 6. By repeating the above
steps, the invariant x ™ may be computed efficiently for any
Hamiltonian.

x¢
x©
x©
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FIG. 10. Ribbon spectrum of the modified triangular lattice with
open boundaries on the top and bottom for the Dirac (§ < 0) case,
showing edge states, using a normalization of a = 1. The color bar
shows the expectation value of the position operator in the vertical
(y) dimension with with red (blue) denoting modes localized on the
top (bottom) of the ribbon. Bulk bands appear black, being fully
delocalized.

The above walk through provides the “how” of computing
rotational invariants, but does not directly provide insight into
what is physically causing the topological distinction. An
intuitive means of understanding what a nonzero x ™ is to
consider a single isolated band (as was done in the main text).
In such a case, the expression for each element of x ™ reduces
to a single yes-no question on whether the band has the eigen-
value in question, and comparing that to the same question at
I". For the element to be nontrivial, there necessarily must be
a difference between I" and the chosen HSP. More concretely,
the rotational behavior of the eigenvector must change as it
passes from I to a given HSP.

This, then, gives the topological aspect: since a symmetry
property changes for continuously defined bands at differing
HSPs, the introduction of a finite edge (or other suitable ter-
mination) results in states that are trapped on that same edge,
analogous to the edge states of other topological effects.

APPENDIX D: SURFACE STATES IN THE DIRAC
(6 <0) CASE

In the case of the gapless Dirac case, with § < 0, there is
no band gap, but nevertheless states exist that are localized at
the edges of the system. Without a band gap they naturally
coexist with bulk states, which is shown via a ribbon spectra
for a semi-infinite model shown in Fig. 10. As discussed in
Sec. IV, as § is tuned to the transition point of § = 0, a bulk
band gap is opened, which permits these localized states to
be isolated from the continuum under the parameter regime
given in Fig. 5. Such states cannot be naively classified as
topological (as there is no band gap), but are still related to the
symmetry-enforced existence of Dirac cones [see Fig. 1(d)].

APPENDIX E: COMPUTATIONAL ASPECTS OF
SYMMETRY INDICATORS FOR CONTINUOUSLY
DEFINED MODELS

Section V A shows a calculation of the symmetry indica-
tors for a photonic crystal model that displays similar behavior

to the TB model studied in the paper. However, such a cal-
culation differs from the discrete TB model as explained in
Appendix C, since systems like photonic or phononic crystals
have eigenfunctions that are continuously defined across their
unit cell area, and are therefore represented numerically by
N x M matrices, rather than vectors. The physics is funda-
mentally the same, but the numerical details must be suitably
adjusted to handle this.

In short, the method employed to determine x® for a
continuously defined model is as follows:

(1) Numerically solve the eigenvalue problem for the unit
cell at the K and I" HSPs and extract the phase profile over the
full real space unit cell boundaries.

(2) Multiply these two phase profiles, point by point, by
the numerical value corresponding to the threefold operator
to be considered (e.g., 1, e¥>7//3). This results in three altered
profiles for each HSP (six in total, though two will just be the
original, unaltered profiles corresponding to the eigenvalue 1).

(3) Compare each of these altered phase profiles to that
of the original phase profile rotated by 120 deg. This is
easily done visually, or can be automated via a pointwise
comparison. Whichever altered profile matches is the correct
eigenvalue corresponding to that operator acting on that HSP.

(4) Apply Eq. (C4) for all modes up to the desired band
gap/eigenfrequency to retrieve the elements for x®.

This process can be readily adapted to any other rota-
tional operator, and is essentially a point-by-point version of
Eq. (C2), amenable to automated numerical computations.

To see how the above procedure is equivalent to Eq. (C2)
mathematically, we can consider that the physical effect of
rotation operators R, is to rotate the locations in 2D space of
lattice sites. If instead of a vector of basis sites we have a con-
tinuously defined eigenfunction of two dimensions | (x, y)),
the operator will act on the physical coordinates (x,y). To
then compute the desired expectation value, we generalize the
inner product definition to the L? norm to find

) Y (x, ) ROW (x, y)dxdy = rg,
ce (El)

(U, V)R | (x, y)) =

where R(0) is the rotation matrix and ry are its eigenvalues.
This definition is not immediately useful in the case of nu-
merically computed eigenfunctions, where instead we have a
discretely defined matrix of complex field values v, up to
a given resolution 6. We may instead construct a matrix Ry
that performs the rotation on each eigenfield value to enact the
rotation numerically, and compute the inner product discretely
as

(Y Ro [Ym) =Y R Vrum = ro. (E2)

nm

The above is formally equivalent to Eq. (C2) in the limit of
dr — 0, under the same symmetry constraints Eqs. (B1) and
(B2) for the matrix defining the Hamiltonian. However, this
definition is cumbersome to apply, as the matrix Ry is not
a simple rotation matrix. The procedure outlined above is
essentially working in reverse of this, where we assume the
eigenvalue, apply it to the field, then rotate the field visually
to compare it.

165403-10



TOPOLOGICALLY PROTECTED EDGE STATES IN ...

PHYSICAL REVIEW B 106, 165403 (2022)

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

[4] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

[5] F. Liu and K. Wakabayashi, Phys. Rev. Lett. 118, 076803
(2017).

[6] M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).

[7] X. Ni, M. Weiner, A. Alu, and A. B. Khanikaev, Nat. Mater. 18,
113 (2019).

[8] M. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A.
Slobozhanyuk, A. Alu, and A. B. Khanikaev, Nat. Photonics
14, 89 (2020).

[9] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809
(2007).

[10] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).

[11] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
New J. Phys. 12, 065010 (2010).

[12] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, aat0346
(2018).

[13] C. Fang and L. Fu, Sci. Adv. 5, aat2374 (2019).

[14] W. Fan, S. Nie, C. Wang, B. Fu, C. Yi, S. Gao, Z. Rao, D. Yan,
J. Ma, M. Shi, Y. Huang, Y. Shi, Z. Wang, T. Qian, and H. Ding,
Nat. Commun. 12, 2052 (2021).

[15] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 86,
115112 (2012).

[16] R.-J. Slager, A. Mesaros, V. JuriCi¢, and J. Zaanen, Nat. Phys.
9, 98 (2013).

[17] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J.
Slager, Phys. Rev. X 7, 041069 (2017).

[18] H. C. Po, A. Vishwanath, and H. Watanabe, Nat. Commun. 8,
50 (2017).

[19] W. A. Benalcazar, T. Li, and T. L. Hughes, Phys. Rev. B 99,
245151 (2019).

[20] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Nature (London)
566, 486 (2019).

[21] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Nat. Phys. 15,
470 (2019).

[22] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T.
Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795
(2013).

[23] J.-K. Yang, Y. Hwang, and S. S. Oh, Phys. Rev. Res. 3, L022025
(2021).

[24] D. J. Bisharat and D. F. Sievenpiper, Research Square (2021),
doi:10.21203/rs.3.rs-380790/v 1.

[25] Y. Zhou, N. Zhang, D. J. Bisharat, R. J. Davis, Z.
Zhang, J. Friend, P. R. Bandaru, and D. F. Sievenpiper,
arXiv:2111.12249.

[26] F. Liu, H.-Y. Deng, and K. Wakabayashi, Phys. Rev. B 97,
035442 (2018).

[27] D. Malterre, B. Kierren, Y. Fagot-Revurat, C. Didiot, F. J. G. d.
Abajo, F. Schiller, J. Cordén, and J. E. Ortega, New J. Phys. 13,
013026 (2011).

[28] J. Li, A. F. Morpurgo, M. Biittiker, and I. Martin, Phys. Rev. B
82, 245404 (2010).

[29] E. Dobardzi¢, M. Dimitrijevié¢, and M. V. Milovanovi¢, Phys.
Rev. B 91, 125424 (2015).

[30] E. Wen, D. J. Bisharat, R. J. Davis, X. Yang, and D. F
Sievenpiper, Phys. Rev. Appl. 17, 064008 (2022).

[31] The states themselves can be removed by a surface perturbation,
forced back into the bulk, as they are not required by symmetry
to exist at a fixed energy in the band gap. However, they will
emerge under the circumstances presented in the model.

[32] E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M.
Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).

[33] J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, Phys. Rev.
B 61, 4381 (2000).

[34] J. D. Cloizeaux, Phys. Rev. 129, 554 (1963).

[35] Z. F. Wang, K.-H. Jin, and F. Liu, Nat. Commun. 7, 12746
(2016).

[36] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev.
B 96, 245115 (2017).

[37] A. Alexandradinata, X. Dai, and B. A. Bernevig, Phys. Rev. B
89, 155114 (2014).

[38] M. Tinkham, Group Theory and Quantum Mechanics (Dover,
New York, 2003).

[39] C. Bena and G. Montambaux, New J. Phys. 11, 095003 (2009).

165403-11


https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41566-019-0561-9
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat2374
https://doi.org/10.1038/s41467-021-22350-6
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1038/nphys2513
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1103/PhysRevB.99.245151
https://doi.org/10.1038/s41586-019-0937-5
https://doi.org/10.1038/s41567-019-0418-7
https://doi.org/10.1038/nphys2790
https://doi.org/10.1103/PhysRevResearch.3.L022025
https://doi.org/10.21203/rs.3.rs-380790/v1
https://doi.org/10.21203/rs.3.rs-380790/v1
http://arxiv.org/abs/arXiv:2111.12249
https://doi.org/10.1103/PhysRevB.97.035442
https://doi.org/10.1088/1367-2630/13/1/013026
https://doi.org/10.1103/PhysRevB.82.245404
https://doi.org/10.1103/PhysRevB.91.125424
https://doi.org/10.1103/PhysRevApplied.17.064008
https://doi.org/10.1103/PhysRevLett.81.1405
https://doi.org/10.1103/PhysRevB.61.4381
https://doi.org/10.1103/PhysRev.129.554
https://doi.org/10.1038/ncomms12746
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1088/1367-2630/11/9/095003

