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T he control and manipulation of 
electromagnetic (EM) waves has 
reached a new level with the recent 

understanding of topological states of 
matter. These metamaterials have the 
potential to revolutionize many areas 
in traditional EM design, from highly 
robust cavities to small-footprint wave-
guides. Much of the past literature has 
been on the cutting edge of condensed-
matter physics, but there are now ample 
opportunities to explore their usage for 
practical microwave and optical devices. 

To assist the beginner, in this tuto-
rial, we give a basic introduction to the 
essential concepts of topological phe-
nomena in EM systems, including geo-
metric phases, topological invariants, 
pseudospin states, and the integer/valley/
spin quantum Hall effects (QHEs). Our 
focus is on engineered photonic topo-
logical insulators (PTIs) in 2D systems. 
We highlight methods for characterizing 
such structures and how they result in 
unique waveguiding properties. In addi-
tion, we provide recipes on how to real-
ize PTIs using photonic crystals (PhCs) 
and metasurfaces, examine differences 
among different types of PTIs, and dis-
cuss the limitations and advantages of 
some of the existing enabling platforms.

INTRODUCTION
In much the same way as PhCs applied 
the ideas of solid-state physics to pho-
tons [1], i.e., EM waves, the new field 
of PTIs [2] finds its origins in the world 

of electronic systems. In electronic 
TIs, electrons propagate along certain 
directions only on the exterior of the 
system. This explains part of the name: 
it is an “insulator” insomuch as it acts 
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like a regular electrical insulator within 
the bulk of a material. “Topological,” on 
the other hand, comes from the global 
topology of the energy band structure 
since it can be categorized by an integer 
(the “topological invariant”) that does not 
depend on the fine details of the system 
(see Figure 1). The occurrence of electri-
cal current on the surface of TIs—and 
how it responds to changes in energy—is 
credited to this topological invariant (see 
Figure 2) rather than minor changes to 
the surface, as in ordinary materials.

TIs found their start in the 1980s 
with the discovery of the QHE in a 2D 
electron gas when subjected to periodic 
potentials and external magnetic fields 
[3], [4]. As in the normal Hall effect, 
applying a magnetic field causes the 
electrons to spin in cyclotron orbits, with 
their frequencies being determined by 
the strength of the B field. When the 
material is strongly confined to 2D and 
cooled to very low temperatures, the 
quantization of the energy of these orbits 
becomes relevant, with the difference 
between the allowed energies becoming 
very large as the field strength increases. 
When the strength of the B field varies 
enough to permit or remove an energy 
level, there will be a sudden jump in the 
transverse conductivity by an exact mul-
tiple of the fundamental constants. 

Hence, the QHE shows that con-
ductivity is fundamentally discrete [5]. 
Importantly, it was found [6] that this 
discrete behavior could be explained by 
a special phase (called the geometric or 
Berry phase, detailed in the “Geometric 
Phase” section) that each electron accu-
mulates as it orbits in cyclotron motion in 
reciprocal (k) space.

How does topology relate to this? As 
it turns out, the discrete nature of the 
conductance is highly robust to deforma-
tions to the bulk of the material, and it 
can be shown that the added geomet-
ric phase responsible for the quantiza-
tion is tied directly to the mathematical 
framework of topological invariants 
(see Figure 2) [3], [6], [7]. This has some 
important consequences: it gives us a 
simple means to classify materials (i.e., 
bandgap materials) by calculating their 
topological invariant (which is a property 
of the bulk material), and it results in 

the technologically useful effects that 
TIs offer.

Materials that have an invariant of 
zero are “trivial,” and they act the same 
as ordinary materials. If the invariant 
is nonzero, however, then the effects of 
the geometric phase become relevant, 
and “nontrivial” effects can be observed. 
One of the most startling effects is what 
happens at the edge between a nontrivial 
material and a trivial material (or anoth-
er nontrivial material with a different 
invariant), where a highly robust trans-
port mode can exist [5]. 

These special modes, called edge 
modes, exist within the bandgap of the 
nontrivial material, and they can be 
explained by the sudden change in the 
invariant across the boundary (e.g., going 
from one to zero). Even more remark-
able is that electrons moving along these 
boundaries must do so in one direction 
only, with no possibility of scattering 
back in the other direction (illustrated in 

Figure 1) [8]. These edge modes are the 
corollary of the quantization of conduc-
tivity in the QHE.

In repeated experiments, these edge 
states are observed regardless of the 
impurities in different material samples 
[9]. Since the invariant is resistant to a 
wide range of distortions to the material, 
the edge states are said to be topological-
ly “protected”—i.e., guaranteed to exist 
so long as the invariant stays the same 
[5]. This is of technological importance 
due to the potential to reduce power 
consumption by eliminating sources of 
loss as well as simplify manufacturing by 
increasing defect tolerances. These dis-
coveries led to the Nobel Prize in Physics 
being awarded to Thouless, Haldane, 
and Kosterlitz in 2016.

These systems with topologica l 
behavior are a consequence of the wave 
nature of the electrons, not specifically 
their quantum interactions [10]. As a 
result, it is possible to construct classical 
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FIGURE 1. (a) Normal versus (b) topologically protected transport. The normal 
case has backscatter at sharp corners and defects, whereas the topological one 
does not. 
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FIGURE 2. Topology concerns quantities that are preserved under continuous 
deformations of objects. A transformation is “continuous” if it does not cause 
any sharp cuts or tears in the object. The number of holes in a closed surface is 
an example of a topological invariant since a hole cannot be added or removed 
continuously: a torus can be stretched and pulled into a coffee cup shape, but not 
a sphere. Electrical conductance in TIs is also determined by a topological invariant, 
called the Chern number (C), where the object is an energy band in the Brillouin 
zone, and the “holes” are determined by the accumulation of the Berry phase. 
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wave systems with analogous proper-
ties to their electronic counterparts. 
This opens the door to a vast range of 
theoretical proposals and experimental 
demonstrations. Replacing the electron 
with a photon (along with a reinterpre-
tation of some quantities), we arrive 
at PTIs, which demonstrate many of 
the same features of TIs [2] and are 
the primary subject of this tutorial (see 
“Side Note 1”). 

In this tutorial, we outline the basic 
concept of the geometric phase and 
extend it to periodic systems in which 
topological properties emerge. We focus 
on 2D PhCs and showcase the physi-
cal implications of Chern numbers and 
topological transitions that can arise in 
such systems. In addition, we discuss the 
formation of degeneracy (Dirac) points 
in PhCs and then the various mecha-
nisms to introduce topological phases 
that make different types of PTIs. Final-
ly, we discuss recent developments in 
and future perspectives on this emerg-
ing field.

GEOMETRIC PHASE
The key idea behind topological effects 
in all areas is the geometric phase, a 
universal concept that emerges when 
a parameter describing a system is 
gradually varied in a closed cycle [11]. 
This phase was first proposed in 1956 
by Pancharatnam for the propagation 
of light through a sequence of polar-
izers [12] and was later generalized 
by Berry for quantum mechanics [13]. 
Many phenomena in physics can be 
attributed to the geometric phase, 
from the mechanical Foucault pendu-
lums [14] to the polarization in helical 
waveguides [15].

Any wave possesses an ampli-
tude (call it )  E0 and an ordinary 
phase ( )  z at a given position and time, 

.,E t E err j t
0= z^ ^h h  When the values 

of r  and  t  are slowly changed from r0  
and t0  to distinct intermediate values r1  

and ,t1  then smoothly changed back to 
r0  and ,t0  we would intuitively expect 
that the initial value of ,E tr^ h would be 
exactly the same as the final value. How-
ever, there are some physically important 
cases where this intuition fails, as in the 
case shown in Figure 3.

If we take a tangent vector (the red 
arrows) and slide it along a path on a 
sphere (the black arrows), returning it to 
the starting position, it will no longer be 
pointing in the same direction. Hence, 
the starting value no longer matches 
the final value. Upon its return to the 
north pole, the orientation of the vec-
tor is rotated by an angle z , which, 
in this situation, is equal to /2r . Note 
that this is the case only because the 
path is a closed loop: if the tangent 
retraced the same path to return to 
the start (enclosing no area), the ori-
entations would match, and z  would 
be zero. In the closed-path case, we 
can consider the angle to be an added 
phase, the geometric phase, that causes 
the initial and final values to differ. 
This phase is geometric because it cor-
responds to a geometric area ( ,X  shad-
ed in blue) of the parameter space that 
the path encloses.

If we think of the sphere in Fig-
ure 3(a) as the sphere of constant wave 
vector k and the vector as the electric 
field (E-field), this parallel transport 
explains the change in polarization in 
the helical and bent waveguides [Fig-
ure 3(b)] [16]. In the example of a bent 
waveguide, if polarized light gradually 
changes direction from z to x- , then 
from x-  to y, and finally back to z, the 
wave will pick up a geometric phase that 
is added to the complex exponential form 
of the E-field. The “path,” in this case, 
is the path traced over the k sphere as 
the wave vector, corresponding to the 
direction, is changed. In this situation, 
the extra phase (in the form of the polar-
ization direction) can be attributed to 
the E-field always being perpendicular 
to the direction of propagation; there-
fore, as the direction of propagation is 
changed, the polarization must neces-
sarily be altered, despite the propaga-
tion direction eventually returning to 
the starting value. Note that this effect 
is possible only due to the existence of 
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FIGURE 3. (a) The geometric phase from parallel transport. (b) The polarization 
(shown as the vector E-field inset at different locations) in a bent circular 
waveguide shows that, as the propagation path is varied and then returned to its 
initial state, there can be a phase shift to the polarization state, which is due to the 
geometric phase. (Source: [16]). 

SIDE NOTE 1
Although the field of PTIs origi-
nated from the electronic version, 
there are some fundamental differ-
ences between the two. The most 
significant is that photons are bo-
sons, whereas electrons are fermi-
ons. This difference manifests itself 
in the ways that different symme-
tries (like time reversal, written as 
an operator T) can change how a 
system behaves. 

Specifically, time reversal for fer-
mions has the relationship ,T 12 =-  
whereas for bosons, it is .T 12 =+  A 
more practical concern is that ab-
sorption in the medium can be an 
issue in photonics. Nevertheless, 
many of the most technologically 
relevant features of TIs (including 
backscatter  immunity)  can st i l l 
be found in photonic systems, so 
long as care is taken to distinguish 
the circumstances in which they 
can exist. 
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two degenerate modes in the waveguide 
(from the circular symmetry).

BERRY PHASE, CONNECTION,  
AND CURVATURE
A geometric phase can emerge due to 
the gradual variation of a state in many 
types of parameter spaces, including the 
momentum space of a periodic system, 
like those of a PhC [17]. For any path 
that traverses an allowed band of a peri-
odic system and does not intersect with 
any other band, the wave vector k (Bloch 
momentum) varies in closed loops due to 
the lattice periodicity, where .k k/r r-  
In a 2D crystal, k traverses the surface 
of a torus geometry, which bounds the 
entire Brillouin zone (BZ) (see Figure 4). 
Many of the most important topological 
properties appear in such systems and 
are a simple platform to understand how 
they emerge. 

The literature on TIs employs a 
great deal of terminology, most of which 
merely refers to a few mathematical con-
structions that assist in characterizing 
when a topological invariant is nontrivial. 
Fortunately, most of these constructions 
have parallels to standard EM theory 
and provide straightforward methods to 
numerically calculate topological features 
of real systems.

Consider a lattice described by a gen-
eral eigenvalue problem in momen-
tum space:

 ,H k k kk n n n$} m }=^ ^ ^ ^h h h h  (1)

where knm ^ h is the eigen energy, and 
kn} ^ h is the normalized eigen wave 

function of H k^ h (often called the Ham-
iltonian in the literature) at each k for 
the nth band, which can be determined 
via Bloch’s theorem. In the following, we 
will make use of the shorthand notation 
of the inner product,

 | ,dA r B r A r B r r$/ @8^ ^ ^ ^h h h h  (2)

to refer to the integration of two vec-
tor functions A and B over a variable 
r, with @  denoting Hermitian conjuga-
tion. Hence, normalized, in this case, 
means | .kk 1n n} } =^ ^h h  Gradu-
ally changing the k along a given ener-
gy band causes a phase accumulation 

associated with the slow evolution of 
.kn} ^ h  Under most circumstances, 

when k returns back to where it started, 
this accumulation results in zero total 
phase, but, like in the examples of the 
“Geometric Phase” section, special cases 
can arise where a nonzero geometric 
phase is added. In the PTI literature, 
the geometric phase is referred to by 
the name Berry phase, specifically to 
recall Berry’s formulation in quantum 
mechanics [13].

To calculate the total Berry phase, we 
need a means to add up the phase con-
tributions from each small change to the 
wave function. The phase shift between 
two n}  states infinitesimally separated 
by ∆k can be represented by their inner 
product [16], expanded as a low-order 
Taylor series as
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Here, we can see that ∆k A kn$ ^ h is the 
phase shift over ∆ ,k  and A kn ^ h is the 
rate of change of the phase shift (see “Side 
Note 2”). A kn ^ h is called the Berry con-
nection or Berry vector potential:

 | | .iA k k kn n k nd} }=^ ^ ^h h h  (4)

Therefore, the Berry phase for the 
nth band is defined as the integral of 
A kn ^ h over some closed path l  in the 
k space:

 .dk A$ kn n

l

z = ^ h#  (5)

The path l  is simply a smooth curve 
of values over the BZ, such as the blue 
and red lines shown in Figure 4(b). If 
we know what a given wave function 
looks like in the BZ, we could use (5) 
to calculate the Berry phase for that 
path. However, there is a catch: the 
Berry connection A kn ^ h is not uniquely 
defined. If a phase change kg^ h is added 
to the eigen wave function ,kn} ^ h  
where kg^ h  is a periodic function 
with ,mkk 2beginendg g r= +^ ^h h  the 
new wave function e ki

n
k }g ^^ hh  is still 

an eigen wave function to .H k^ h  The 
Berry connection is then transformed as 

 ,A k A k k kn n" 2 2 g-^ ^ ^ ^h h h h  where 
it changes its formula with a different 
choice of .kg^ h

The Berry phase, on the other hand, 
is invariant modulo 2r :
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This can also be understood quali-
tatively. As the wave vector k slow-
ly travels around the loop of a band, 
the wave function kn} ^ h eventually 
returns to where it starts and picks up 
a phase of a multiple of 2r , with most 
systems picking up zero [11]. Since the 
Berry connection depends on how we 
set up the calculation, yet we know 
that the Berry phase should not, it 
is helpful (especially for numerical 
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FIGURE 4. The (a) BZ can be considered 
as a (b) torus by taking each periodic 
boundary (red and blue) and 
connecting them together. 

SIDE NOTE 2

The notation |a b  represents the 
inner product of the wave functions 
a  and ,b  whereas kda b  denotes 
the inner product of a  and .kd b
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purposes) to define a quantity that 
will be invariant to any arbitrary phase 

kg^ h that we may add. 
The Berry curvature, or Berry flux, 

a quantity that is invariant under such 
transformation, can be construct-
ed by taking the curl of the Berry 
connection:

 .A kkΩn nkd=^ ^h h  (7)

Then, using Stokes’s theorem, the Berry 
phase can be rewritten as the integral of 
the Berry curvature:

 ,Ωd k kn
S

n
2 $z = 8 ^ h  (8)

where the integration is over the surface 
bounded by the path l  [16].

TOPOLOGY IN 2D PhCs
The previous section dealt with the gen-
eral concepts of the geometric phase in 
periodic media, regardless of the physi-
cal setting (i.e., electronic, photonic, and 
so on). To make this explicit, here, we 
show how this theory can be specialized 
for 2D EM systems. For EM waves, the 
eigenvalue problem space is described by 
the macroscopic Maxwell equations. For 
nonbianisotropic materials in 2D, the 
magnetic field can be eliminated—for 
simplicity, when treating transverse mag-
netic (TM) modes, given by the Ez-field 
alone—and Maxwell’s equations can be 
recast in a compact form as

 ,E Er r r rz zrr
1 2d dn ~ e=- ^ ^ ^ ^h h h h6 @  

 (9)

where ~  is the angular frequency; 
E rz ^ h is the z component of the E-field 
(hereafter, we will drop the  z  subscript); 
and rn^ h and re^ h are the magnetic 
permeability and dielectric permittiv-
ity tensors, respectively. Note that we 
are ignoring dispersive effects for now, 
but further analysis shows this is valid 
in many cases [16]. By applying Bloch’s 
theorem to (9), the eigen wave function 
can be obtained in the form of eigen 
E-field ,E r,n k ^ h  assuming a periodicity 
of the material parameters [1]. 

Since the eigenvalue problem 
involves the dielectric permittivity re^ h 
on the right-hand side of (9), the inner 
product of two eigen wave functions 
E r,n k1 ^ h and E r,n k2 ^ h can be written as
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where ) denotes complex conjugation. 
The Berry connection then takes the 
form of
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As in the general case, E ,n k  is normal-
ized such that | .E E 1, ,n n kk HG =  Sub-
sequently, the Berry curvature and 
phase can be written as discussed  
earlier. 

CHERN NUMBER
With the aid of the Berry curvature, 
we can calculate the Berry phase that 
a given EM mode may acquire for a 
2D PhC lattice. As mentioned in the 
“Introduction” section, the relationship 
to topology comes in the form of an 
invariant tying a nonzero Berry phase 
to the edge modes. For EM systems, this 
invariant is called the Chern number, 
after Chinese American mathematician 
Shiing-Shen Chern.

The Chern number always takes an 
integer value (see “Side Note 3”). When 
it is nonzero, the 2D photonic system is 
said to be topologically nontrivial. The 
Chern number of the nth band of a 2D 
lattice is simply the Berry phase over the 
full BZ:

 Ω , ,C d k kk2
1

n n x y

BZ

2
r

= ^ h#  (12)

where, in 2D, the Berry curvature only 
has two terms:

 , ,k k k
A
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AΩn x y

x

k
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y
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y x

2
2

2
2

= -^ h  (13)

where An  is the Berry connection for 
the nth mode:

 ,A i d E k
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r r r
r

,
,

k
n

n
x

n
k

k2
x 2

2
e= ) ^ ^ ^h h h#  

 (14)

 .A i d E k
E

r r r
r

,
,

k
n

n
y

n
k

k2
y 2

2
e= ) ^ ^ ^h h h#  

 (15)

When calculated for an arbitrary 
polarized band over the whole BZ, the 
Chern number, expressed by Cn , takes a 
nonzero value only when the time-reversal 
symmetry (TRS) is broken for the lattice 
[2]. The most common case when this 
happens is if a magnetic field is applied 
(the Faraday and Kerr effects). In such 
cases, the system is often called a Chern 
insulator or Chern PTI.

However, there are a few ways to 
observe topological effects, even when 
the TRS is retained [4]. Such systems 
are still reciprocal (i.e., they cannot 
form true isolators), but they can dis-
play immunity to certain types of back-
scatter and act as robust polarization 
filters [18]. 

One popular version of time-rever-
sal-symmetric PTIs is the “valley” PTI, 

SIDE NOTE 3
Why is the Chern number always an 
integer? A simple explanation comes 
from comparing the equations with 
those of the magnetic field. The 
Berry curvature has the same form as 
the magnetic field, where the Berry 
connection takes the place of the 
magnetic vector potential (hence, the 
term Berry vector potential; likewise, 
the Berry phase can be thought of as 
a magnetic flux):

  .A B An n rk +# #d dX = =  (S1)

Since the Chern number is just the 
integral of the Berry curvature, this is 
the k-space version of integrating the 
magnetic field:

  .C d dk B rn n +$ $X= 8 8  (S2)

From Gauss’ law for B fields, we 
know that doing so wil l  always 
g i ve  ze ro,  u n l e s s  t h e re  e x i s t s 
a  m a g n e t i c  m o n o p o l e  i n  t h e 
integration area. In such a case, 
the integral will  give an integer 
multiple of monopole charges. In 
contrast to the B field, the Berry 
phase can contribute “monopoles” 
to the Berry curvature, the number 
of which is the Chern number [16]. 
Hence, the Chern number must be 
an integer. Further proofs can be 
found in [2] and [7].
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which associates different directions (C  
to K and C  to K´) in k space with “val-
ley Chern numbers.” To calculate the 
valley Chern number Cv , the integral in 
(12) is simply performed over only one 
half of the BZ, such that two ordinar-
ily identical high-symmetry points (K 
and K´) are separated. This gives two 
different values of Cv , one for each half 
of the BZ. Added together, they will 
equal the normal Chern number (zero 
for reciprocal systems), but, considered 
separately, they can be nonzero under 
special cases [19].

The other major reciprocal PTI is 
the “spin” PTI, which associates the 
handedness of a circularly polarized 
mode (or other combinations of modes) 
with a “spin Chern number” Cs  [20]. 
In general, these spins/polarizations 
are constructed by a superposition of 
two or more eigen fields from multiple 
bands at the same frequency (see “Side 
Note 4”). Each polarization (right- and 
left-handed) corresponds to its own value 
of Cs  [20], [21]. As such, the E-field in 
the inner product definition must be 
replaced with the field associated with a 
given polarization.

NUMERICAL CALCULATION OF THE 
CHERN NUMBER
In calculations of the Chern number 
for simulations or experiments, we 
need to discretize the continuous 2D 
BZ into a lattice, as shown in Figure 5. 
The shown discretization is for a square 
BZ (for square lattices), but the same 
methods will work on triangular lat-
tices, where the usual hexagonal BZ is 
shifted to form a rhombus [23], [24]. 
The Chern number can be written as 
[23], [24]

 , ,C k k k k2
1 Ω
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Since kxD  is small,
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If we number the four vertices of a 
small cell as 1, 2, 3, and 4 in a clockwise 
direction, as shown in Figure 5, the inte-
gral of the Berry curvature over the grid 
can then be written as

, ( |
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Here,
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,
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n p n q

w m
n p n qTe= )/ ^ ^h h  (20)

where ,  ,  ,  ,p q 1 2 3 4= " ,  denotes the 
four vertices; (w, m) indicates the (w, 
m)th discretized cell in the real space; 

;k k kx yT T T=  and sT  is the area of 
the discretized lattice in the real space. 
Equation (19) shows that the integral of 
the Berry curvature over each small cell 
in the BZ can be obtained by taking the 
inner products of the eigen E-fields at 
adjacent vertices in a clockwise order, as 
illustrated by the inset in Figure 5.

Substituting (19) into the summa-
tion in (16), we get a discrete approxi-
mation of the Chern number. It can be 
shown that this approximation converg-
es to the (continuous variable) Chern 
number at the limit k 0x y "T ^ h  [25]. 
Fortunately, it also rapidly converges, 
often as coarse a grid, as 24 × 24 cells 
enough for accurate determination of 
the Chern number [23], [25]. 

The spin Chern number can be com-
puted by separating the two distinct 
spin eigenmodes (generally polarization 
based) and performing the Chern num-
ber calculation on each [20]. For non-
trivial spin PTIs, this will result in two 
identical values, each being the negative 
of the other [22], [23]. For valley Chern 
number calculations, only half of the 
BZ is integrated in (20) to account for 
the contribution of a finite region in the 
momentum space that corresponds to 
specific high-symmetry points in the BZ 
[23] (see “Side Note 5”). 

From a practical perspective, the 
Chern number gives a straightforward 
means of checking whether a given 
system has edge states and, therefore, 
if it will be robust to various forms of 

SIDE NOTE 4
There are several ways of defining 
a spin Chern number. The different 
formulations depend on how the 
spins are rigorously related to a 
true topological invariant of the 
physical system. In general,  the 
invariant of a spin PTI is frequently 
referred to as a Z2  topological 
invariant  [22],  distinct from the 
ordinary Chern number, but, in this 
tutorial, it sufficient to consider it 
as a subtype of the standard Chern 
number ,Cn  albeit specialized to a 
given spin definition.
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FIGURE 5. The discretization of a square 2D BZ in the increment of k xT  in x 
direction and k yT  in the y  direction. A hexagonal BZ can be discretized into a 
parallelogram grid in a similar manner. 
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disorder. We have provided a collection 
of general-purpose MATLAB functions 
that perform the various steps, available 
via a public repository [26]. It is worth 
noting that these numerical methods 
are not the only option to determine the 
nontriviality of a system, with another 
powerful technique being the Green’s 
function approach (which also simpli-
fies the analysis of degenerated bands) 

[27]. In the proceeding sections, we 
show example calculations of each PTI 
type (Chern, valley, and spin) using this 
code, with the eigenmode data simulat-
ed via the Ansys high-frequency struc-
ture simulator.

The Chern number describes the 
topology of a band and characterizes the 
most fascinating and technologically rel-
evant phenomena: topologically “protect-
ed” edge states. These edge states appear 
at the interface between two structures 
with unequal Chern numbers.

Unlike traditional photonic wave-
guides, with a trivial edge state between 
two ordinary insulators (with a Chern 
number of zero), the nontrivial edge 
waveguide formed by these two topologi-
cally inequivalent structures (at least one 
structure is of a nonzero Chern num-
ber) would be immune to defects and 
backscattering. This is because, when 
two domains with different topological 
invariants are connected directly to form 
an interface, a topological phase transi-
tion must happen at the interface [2] (see 
“Side Note 6”). 

Essentially, the differing topologies 
mean that the respective bands in each 
bandgap material cannot be continuously 
transformed into one another. Trans-
forming one into the other requires the 
frequency gap to close at the interface 
and then reopen on the other side. This 
phase transition gives rise to the gapless 
edge states at the interface. To accom-
modate the jump in the Chern number’s 
integer value, e.g., from 1 to 0, 1 to –1, 
and so on, the number of gapless edge 
modes turns out to be the difference of 
the Chern numbers across the interface 
[28]. This is known as the bulk-edge cor-
respondence [2].

These gapless modes are tied to the 
bulk Chern numbers, so they are robust 
and must always exist, regardless of the 
specific shape of the boundary (unlike con-
ventional waveguides) [2]. It is worth stress-
ing that these modes are distinct from 
those found in standard PhC waveguides 
(which can also possess high robustness 
[29]), with the primary difference being 
that their immunity to certain forms of 
scattering is a global property of the bulk 
rather than any specific arrangement 
of PhC cells. 

CHERN PTIs
In general, PhCs and other periodic 
structures have a zero Chern number 
[2]. To engineer one, we need to focus 
on two key steps: 1) finding a degenerate 
point between the bands and 2) break-
ing a symmetry that opens a bandgap 
near that point (see “Side Note 7”). This 
section details how the simplest type of 
PTI, the Chern PTI, is constructed and 
demonstrates the exciting features it has 
for practical designs. This type of struc-
ture is a direct emulation of the QHE 
discussed previously [30].

The first step, finding degeneracies, 
relates to the abrupt nature of the Chern 
number: a material can change its Chern 
number (a topological phase transition) 
only when two or more photonic bands 
are degenerate at a point. This is part 
of the reason for the robustness of edge 
modes, as any small change to the struc-
ture that keeps the bandgap open in the 
bulk does not affect the mode. Finding 
a degeneracy in PhCs is common, but 
the second step, opening a bandgap via 
a broken symmetry, places some restric-
tions on the degeneracies that are useful 
for making a PTI [2].

The simplest type of degenerate point 
for PTIs is a linear crossing of two bands, 
often called a Dirac cone in the literature 
[4]. Such a crossing can be made via a 
PhC in a honeycomb lattice, where the 
degenerate point will always occur at the 
K(K´) high-symmetry point in the BZ [1]. 
To obtain a nontrivial PhC, it is, however, 
not necessary to form a linear-type degen-
eracy, as any other type (e.g., quadradic 
[31] or accidental [32]) will also work.

To see how t h i s  work s  for  a 
real device, we use the example of 

SIDE NOTE 6
The topological phase transition 
is the procedure where a system 
changes its topological invariant. 
Systems with different topological 
invariants cannot change into each 
other without a phase transition. In 
periodic systems, this occurs when 
a bandgap closes, marked by a 
change in the Chern number. In PhCs, 
a topological transition is usually 
induced by changes in the symmetry 
or geometry of the PhC unit cell. 

SIDE NOTE 7
The most useful symmetries for EM 
systems are as follows:

 ■ TRS: ,  t t"- broken by gyrotropic 
materials with applied E-/H-fields

 ■ spatial-inversion symmetry: ,  r r"-

broken by altering the geometry 
of the material (e.g., removing a 
slice from a cylinder or changing 
circles to triangles).

SIDE NOTE 5
Computing the Berry curvature and 
topological invariant for degenerate 
modes is slightly different than for 
the other types since they involve a 
combination of modes. To account 
for multiple modes, it is necessary 
to change the representation of the 
Berry connection to a matrix where 
each element is the Berry connection 
between a pair of modes [23]. For the 
common case of a single degenerate 
pair, the matrix takes the form of
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where the superscripts correspond to 
the band index. With this formulation, 
the Berry curvature for a given cell is 
given by
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(S4)

Equation (S4) can be generalized to as 
many degenerate bands as necessary 
[23], [25]. 
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Wang et al. [33], which was later devel-
oped into the first experimental dem-
onstration of a Chern PTI [34]. First, to 
create the initial degenerate point, we 
select a square lattice of circular rods 
[chosen to be made of yttrium–iron–gar-
net, (YIG), for reasons soon explained] 
and tune the geometry to find a quadratic 
crossing of the second and third bands at 
the M point, shown in Figure 6(a). Note 
that there is also a degeneracy at the C  
point for the third and fourth bands, but 
we focus on the quadratic M point here.

Now that we have our degeneracy, 
we must break a symmetry that opens 
a complete bandgap near it. The chief 
symmetries present in the system are the 
TRS (where running time backward does 
not affect the response) and SIS (where 
flipping the coordinate axes maintains 
the shape and orientation of the unit cell).

Breaking either will induce a band-
gap, but only breaking the TRS will 
cause a nonzero accumulation of the 
Berry phase over the whole BZ and, so, 
will result in the desired edge modes 
[24]. Following Wang et al.’s approach, 
the TRS can be broken by applying a 
static magnetic field perpendicular 
to the 2D plane. Doing so induces an 
anisotropy to the magnetic permeability 
of the YIG with the form

 .i
i

0 0

0
0

0

n

n

l

l

n

n

= -x > H  (21)

Here, l  represents the effect of the  
z-directed dc magnetic field and is zero 
when the field is turned off. For a 1,600-G  
magnetic field [33], the values at 4.28 GHz 
are .12 4 0l n=  and 14 0n n= , with 0n  
being the vacuum permeability in meter–
kilogram–seconds. Breaking the TRS 
by turning on the magnetic field opens 
a bandgap near the degenerate point 
for the second and third bands at the M 
point, as shown in Figure 6(b).

To confirm that the opened bandgap 
is indeed topologically nontrivial, we can 
observe the behavior of the Berry cur-
vature for the various bands, shown in 
Figure 7(a) and (b). We can see that the 
second mode has a very large contribution 
to the Berry curvature right at the M point 
and, likewise, for the X point of the third 
mode. Integrating over each separately, we 
find the Chern number of the lowest band 
to be zero, while the next three are –1, 
2, and 1, indicating the existence of edge 
modes within the upper bandgaps.

An important thing to note is that, 
while the Chern number Cn  is asso-
ciated with each band n  of the bulk, 
edge modes are associated with the 
bandgaps between them. To differen-
tiate this, we often speak of the “gap 
Chern number” ,C Cn n ngap gR= 1  which 
is just the sum of the Chern numbers of 
all bands below a given bandgap with 
upper band ng  [16]. Hence, to observe 
edge modes, we need to operate within 
a bandgap between two materials with 

different gap Chern numbers, with the 
net number of modes being their differ-
ence: .N C C Cmodes gap gap,1 gap,2= = -T  
For this example, that implies the lowest 
bandgap will have no edge modes (or, 
more precisely, the net number of right-
ward modes equals the net number of 
leftward modes [35]), while the second 
and third bandgaps will.

The magnetized YIG model displays 
all of the telltale signs of a Chern PTI, 
and, as such, we can construct a wide 
range of devices that exploit its nonrecip-
rocal and highly robust nature. One such 
demonstration is an isolating transmis-
sion line with two 90° bends, shown in 
Figure 7(c) and (d) (compare with Fig-
ure 1). Similar to ferrite-based magnetic 
isolators, the device is nonreciprocal 
for any EM mode inside the nontrivial 
bandgaps, but there are a few important 
and highly attractive features:

 ■ Unlike a traditional isolator, EM ener-
gy is not simply routed to a lumped 
element load and dissipated locally as 
heat [34]. Instead, the influence of the 
Berry phase results in an edge mode 
only for a single direction of propaga-
tion, with no allowed modes in the 
opposite direction. Hence, any energy 
sent the opposite way will either be 
reflected or decay exponentially into 
the bulk in the same manner as a triv-
ial PhC [Figure 7(d)].

 ■ The directionality of the mode is 
determined by the direction of the 
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bias magnetic field, so flipping its 
direction will also flip the allowed 
propagation direction.

 ■ With the lack of backward modes, 
a source of backscatter, like the 

shown 90° bends, will force the 
energy around corners with negli-
gible losses. This will occur so long 
as the strength of the scatterer is not 
greater than the size of the nontriv-
ial bandgap, provided the scatterer 
is nonmagnetic [2]. Likewise, any 
small defect, like the three missing 
rods, will not lead to scattering.

 ■ Being essentially a distributed device, 
the level of isolation and insertion loss 
can be tuned by varying the length 
and shape of the structure.

This example is for a 2D system, 
which can be experimentally emulated 
via a parallel-plate waveguide structure, 
with the separation between the plates 
being very thin, ensuring only TM modes 
can propagate. This platform makes it 
easy to analyze but is less straightfor-
ward to integrate into normal EM and 
photonic systems. However, there are 
numerous studies and ongoing work to 
create Chern PTIs for more practical 

settings [36]. A major breakthrough for 
this line of research was the development 
of the valley and spin PTIs (detailed in 
the following sections), which remove 
the requirement of the external magnetic 
field (see “Side Note 8”). 

VALLEY PTIs
Although the Chern PTI has many 
advantages, the requirement for magne-
to-optical materials and external mag-
netic fields places limits on the practical 
applications. The question then arises: can 
we construct a PTI with similar features 
of robustness to disorder or sharp turns 
while still being reciprocal? The answer 
turns out to be yes, with some limitations. 
There is another type of PTI made of 
passive materials that exploits an inherent 
degree of freedom of hexagonal lattices 
that can be used to mimic similar phe-
nomena for robust edge state propagation, 
although the level of robustness depends 
on the types of disorder considered.

SIDE NOTE 8
Although the example of a Chern 
PTI studied here concerns periodic 
structures with discrete translational 
symmetry, it has been recently shown 
that Chern numbers can also be 
defined for continuous media, such as a 
homogenous magnetized plasma [S1]. 
In addition, other platforms, including 
arrays of coupled waveguides, can be 
used to emulate the effect at optical 
frequencies [38].

Reference
[S1] M. G. Silveirinha, “Chern invariants for 
continuous media,” Phys. Rev. B, vol. 92, no. 
12, p. 125,153, Sept. 2015. doi: 10.1103/Phys 
RevB.92.125153.
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Specifically, in a hexagonal/graphene-
like lattice, the angular rotation of the 
E-fields at the high-symmetry point K 
or K´ generates an intrinsic magnetic 
moment, which is called the valley 
degree of freedom [19]. The term valley 
is used owing to the shape of the disper-
sion near the K (K´) point, which, in a tri-
angular lattice, is a deep dip, or a sharp 
peak, both of which are referred to as 
valleys. Just as the Chern PTI emulates 
the QHE, the valley PTI is a model for 
the “quantum valley Hall effect,” studied 
in graphene-like materials.

To design a valley PTI, we can start 
from a graphene-like PhC, which pos-
sesses the “Dirac”-like degenerate point 
at the K (K´) point. Such a lattice can 
be constructed by a unit cell contain-
ing two rods of equal radius (A and B 
sites), shown in the inset to Figure 8(a). 
Like when constructing a Chern PTI, 
a symmetry must be broken to lift the 
degeneracy. In a valley PTI, a controlla-
ble bandgap can be achieved by differen-
tiating the A and B rods in the unit cell, 
thus breaking the inversion symmetry. As 
we show through examples, a graphene-
like PhC that lacks inversion symmetry 
exhibits opposite Berry curvatures at the 
K and K´ points [23]. In principle, this 
allows us to selectively couple to either 
the K or K´ valleys, which would result in 
a unidirectional topologically protected 
edge mode that is locked to the direction 
of C  to K or C  to K .́

Here, we look at an example of a 
dielectric valley PTI from [39]. Each 
unit cell consists of two silicon rods, A 
and B, with corresponding radii rA  and 
rB . When rA  and rB  are identical (here, 

.r r a0 25 A B= = , with lattice constant 
a ), the structure becomes a type of 
photonic graphene, and there is a Dirac 
degeneracy at the K (K´) point as shown 
in Figure 8(a).

We then break the inversion sym-
metry by shrinking the A rod slightly 
( . ) .r a0 19A =  This lifts the degeneracy 
and opens a complete bandgap around 

it, as shown in Figure 8(b). Note that 
we can tune this bandgap by tuning 
the dimensions of A and/or B. The 
more different A and B are, the larger 
the bandgap.

As shown in Figure 9, the in-
plane E-field distribution of the first 
and second bands at the K valley are 
accompanied by an energy flux (i.e., 
time-averaged Poynting vectors) rotating 
in either a clockwise or counterclockwise 
manner. In accordance with the TRS, 
we also find that the field profile at the 
K´ valley exhibits the reversed direction 
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of energy flux. The flux vortex’s center 
corresponds to a singular point of the 
phase (here, the out-of-plane E-field Ez), 
carrying an orbital angular momentum 
(OAM) with its sign depending on the 
vortex direction [39]. 

This vortex can be considered as an 
“artificial magnetic field”-like effect 
that replaces the role of the real mag-
netic field of the Chern PTI. Meanwhile, 
inverting the orientation of the unit cells 
in the plane (i.e., swapping the A and 
B lattice sites) results in identical band 
structures but opposite signs of the OAM 
at the K and K´ valleys. Importantly, the 
frequency order of the OAM states at 
each valley is also inverted, which indi-
cates a topological phase transition.

To further validate the nontrivial 
topological character of the bands, we 
can numerically calculate the Berry cur-
vature, as shown in Figure 10(a) and (b). 
The spike at the K point results in a Berry 
phase of r , while there is a r-  Berry 
phase accumulation at K .́ Integrating 
over half of the BZ [or near K (K´)], we 
get the valley Chern number of ( / )1 2+  
for K and ( / )1 2-  for K .́ If the A and 

B sites are exchanged, we get the val-
ley Chern number of ( / )1 2-  for K and 

( / )1 2+  for K´ (see “Side Note 9”). 
Furthermore, we can see that the 

signs of both flip from the lower band 
to the higher band. This indicates that 
valley-polarized topological edge states 
exist within the bandgap at an inter-
face between structures with opposite 
unit cell orientations (between A–B 
and B–A). The interface will, therefore, 
have A sites adjacent to A sites or B sites 
adjacent to B sites. The number of edge 
modes at each valley, in accordance with 

the bulk-edge correspondence, is deter-
mined by the difference of Cv  above 
and below the bandgap: C C 1, ,v

K
v
K

2 1- = , 
C C 1,

'
,v

K
v
K

2 1- =-l , where each value cor-
responds to a single valley (K or K´). The 
differing signs here could be interpreted 
as the sign of the group velocity of the 
forward- and backward-propagating 
modes at the two valleys [19].

We can again build, essentially, the 
same bent waveguiding model as the 
Chern PTI to demonstrate the robustness 
of the valley structure, shown in Figure 10(c) 
and (d). The valley PTIs also have their 
own features (see “Side Note 10”): 

 ■ Unlike the Chern PTIs (and spin 
PTIs), where topological edge 
modes can be formed at the inter-
face between nontrivial and trivial 
lattices, the valley edge modes exist 
only at the interface between two 
valley PTIs with opposite valley 
Chern numbers (( / )1 2  and ( / )) .1 2-  
Therefore, when constructing a val-
ley waveguide, there must always be 
a pair of complementary valley PhCs.

 ■ Since the valley edge modes are 
coupled to K or K´ valleys, these 

SIDE NOTE 9
How can the “valley Chern number” be 

/1 2!^ h  when the Chern number 
is always an integer? The value is only 
guaranteed to be an integer when the 
integrated curvature is closed, while, 
here, we consider only half the BZ, which 
is, therefore, open. Valley PTIs gain their 
characteristics by the opposite behavior 
at K and K ,́ even though the “true” Chern 
number is zero.
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edge modes are the most robust in 
the directions where the valleys are 
clearly defined (i.e., the C -to-K or 
C -to-K´ directions), indicating that 
they will preserve their unidirection-
ality only when sharp turns are 120°. 
In contrast to Chern PTIs, defects 
that scatter valleys into each other 
(breaking the C v3  symmetry, for 
example) will weaken the edge mode 
and give lower robustness [40].

 ■ Valley states can couple to spin-type 
modes in certain PTIs [41]. These 
spin–valley coupled edge states can 
be used to form “valley splitters” that 
are not restricted by the orientation 
of the unit cell [41].

 ■ Unlike many spin PTI designs, it is 
simple to construct planar or nearly 
planar valley PTIs, making them an 
attractive choice for integration with 
normal silicon [42] or metal-on-insu-
lator designs.

SPIN PTIs
The last major PTI type, the spin PTI, is, 
in a practical sense, similar to the valley 
type, being reciprocal while still possess-
ing highly robust features. A full example 
of a recently demonstrated planar metallic 
PTI [44], which has a number of attractive 
features for integration with traditional 
microwave systems [45], is provided in the 
additional online materials. Spin PTIs are 
also readily adaptable to dielectric plat-
forms suitable for optical bands [46]. 

CONCLUSIONS AND FUTURE OUTLOOK
In this tutorial, we have given an over-
view of the concepts, mathematics, and 
implementations of PTIs. The central 
idea that relates the topics together is the 
geometric phase, which lies at the heart 
of both theory and physical realization. 
This concept is readily applied to a 2D 
PhC, which is a simple platform to engi-
neer topological modes. Computations of 
the Berry curvature, Chern number, and 
other topological invariants for a given 
design illuminate how the geometric 
phase influences the system and can be 
readily calculated with numerical tools to 
aid in design.

The three most common formula-
tions of PTIs, the Chern, valley, and spin 
PTIs, all represent different strategies to 

achieve the effects of topologically pro-
tected modes, lending considerable flex-
ibility to their usage. In all cases, such 
devices possess remarkable robustness 
to a wide class of disorder, which could 
enable much greater fabrication toleranc-
es for applications like extremely robust 
integrated optical waveguides [38]. Like-
wise, their immunity to backscattering 
off of sharp bends has the potential to 
shrink device footprints by eliminating 
the gradual bends or careful engineering 
needed at the edges to overcome losses 
or higher-order mode mixing when a 
turn is required in a waveguide [2], [36]. 

For the case of the Chern PTI 
devices, there is a large effort to deploy 
topologically protected lasers [47], with 
many recent studies realizing arbitrarily 
shaped optical cavities immune to dis-
order [48]. Further uses can be seen 
in isolators [34] and circulators [37]. In 
the magnetic field-free valley and spin 
implementations, there is potential to 
use such devices in place of traditional 
transmission lines or waveguides, with 
the added benefits of sharp bend immu-
nity and robustness to disorder [40], [44]. 

For microwave devices, many of these 
are functionally similar to traditional 
metallic structures, and, as such, could 

be integrated into standard systems with 
relative ease [40]. At optical frequencies, 
topologically protected designs could 
enable features like spin-selective filtering 
[43] and unidirectional polarization con-
trol [19] beyond general robustness.

ONLINE SUPPLEMENTARY MATERIAL
This article has supplementary down-
loadable material available at https://doi 
.org/10.1109/map.2021.3069276, provid-
ed by the authors.
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SIDE NOTE 10
It is also possible to build a purely 
metallic valley PTI. For example, a valley 
PTI can be constructed by a patch-
type flat metasurface to engineer 
transverse electric modes (or apertures 
for transverse mag netic modes) [S2]. 
Simply changing the shape of the patch 
from a hexagon into a triangle reduces 
the cell from a 60° to 120° rotation 
symmetry. As a result, the degenerate 
bands split at the two inequivalent but 
time-reversed valleys (K and K´), leading 
to a bandgap in the BZ. Edge modes 
will form between sheets of upward- 
and downward-pointed triangles. 
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