
J. Appl. Phys. 129, 095103 (2021); https://doi.org/10.1063/5.0042330 129, 095103

© 2021 Author(s).

Confining and channeling sound through
coupled resonators
Cite as: J. Appl. Phys. 129, 095103 (2021); https://doi.org/10.1063/5.0042330
Submitted: 29 December 2020 . Accepted: 17 February 2021 . Published Online: 04 March 2021

 Yun Zhou,  Prabhakar R. Bandaru, and Daniel F. Sievenpiper

COLLECTIONS

Paper published as part of the special topic on Acoustic Metamaterials 2021

ARTICLES YOU MAY BE INTERESTED IN

Tunable low-frequency and broadband acoustic metamaterial absorber
Journal of Applied Physics 129, 094502 (2021); https://doi.org/10.1063/5.0038940

Control of low-frequency Lamb wave propagation in plates by boundary condition
manipulation
Journal of Applied Physics 129, 094903 (2021); https://doi.org/10.1063/5.0042576

Ventilative meta-window with broadband low-frequency acoustic insulation
Journal of Applied Physics 129, 094901 (2021); https://doi.org/10.1063/5.0042384



Confining and channeling sound through coupled
resonators

Cite as: J. Appl. Phys. 129, 095103 (2021); doi: 10.1063/5.0042330

View Online Export Citation CrossMark
Submitted: 29 December 2020 · Accepted: 17 February 2021 ·
Published Online: 4 March 2021

Yun Zhou,1,a) Prabhakar R. Bandaru,1,2,3,a) and Daniel F. Sievenpiper2,3,a)

AFFILIATIONS
1Department of Mechanical Engineering, University of California, San Diego, La Jolla, California 92093, USA
2Program in Materials Science, University of California, San Diego, La Jolla, California 92093, USA
3Department of Electrical Engineering, University of California, San Diego, La Jolla, California 92093, USA

Note: This paper is part of the Special Topic on Acoustic Metamaterials 2021.
a)Authors to whom correspondence should be addressed: yuz421@eng.ucsd.edu; pbandaru@eng.ucsd.edu; and
dsievenpiper@eng.ucsd.edu

ABSTRACT

Confining sound is of significant importance for the manipulation and routing of acoustic waves. We propose a Helmholtz resonator (HR)
based subwavelength sound channel formed at the interface of two metamaterials for this purpose. The confinement is quantified through
(i) a substantial reduction of the pressure and (ii) an increase in a specific acoustic impedance (defined by the ratio of the local pressure to
the sound velocity)—to a very large value outside the channel. The sound confinement is robust to frequency as well as spatial disorder at
the interface, as long as the interface related edge mode is situated within the bandgap. A closed acoustic circuit was formed by introducing
controlled disorder in the HR units at the corners, indicating the possibility of confining sound to a point.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042330

I. INTRODUCTION

The propagation and modulation of sound has been tradition-
ally considered in terms of an acoustic impedance, Zac, through the
product of the density (ρ) and the velocity (vs) of the medium in
which sound propagates. However, it is not easy to understand the
confinement of sound, through a traditional Zac formulation, as
there does not seem to be a reference to which an acoustic imped-
ance may be compared. Moreover, the absence of a magnetic field
in acoustic systems does not allow for confinement and related uni-
directional/chiral transport,1 without external rotational forces,2–4

implying that pseudomagnetic fields are introduced to the system.5

While acoustic pseudospins6–13 and valley states14–18 as related to
topological surface states have been proposed to yield directionality,
the surface dispersion and associated large velocity favor radiation
and consequently a reduced confinement, with unclear robustness
to disorder.19 It may also be expected that wave-based interference
phenomena with constructive or destructive interferences could
potentially yield regions where sound is focused to be absent or
present and may be considered for sound confinement.20,21

However, the intrinsic longitudinal/non-vectorial character of
sound propagation is an issue.

An alternate strategy for sound confinement and propagation
over a finite distance is to use resonators that are coupled. The
flatband22 related energy dispersions related to local resonators
would permit localization and enhance the possibility for sound
confinement. We propose that such binding of sound at the subwa-
velength regime may be accomplished through Helmholtz resona-
tor (HR)-based arrangements. It has been previously discussed
that bands and associated bandgaps could be generated through
HRs,23–27 especially at lower energies, while the higher energy
bandgaps would be mainly due to Bragg resonances. Patterning
HRs onto acoustic topological lattices can render tunability of the
Bragg scattering based topological bandgaps in the subwavelength
range.28–33 However, bandgaps arising from HR related local reso-
nances would not support topological interface states, and the
related edge modes or localized states would not generally be
subject to a bulk-boundary correspondence. The objective is then
to extend the confinement over a number of HR units, the cumula-
tive length over which sound may be considered to be bound. The
width of the bands and bandgaps could be adjusted through a
tuning of the geometrical parameters of the HR. While it has been
indicated previously that the coupling of a number of HRs to a
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waveguide would result in a sound trapping device,34 or negative
index acoustic metamaterials,35–37 the related propagation and
extent of confinement was not discussed. Moreover, the ability of
HR unit-based interfaces to confine sound was not considered, as
would be indicated in this work.

II. HELMHOLTZ RESONATORS CONSTITUTED UNIT
CELL AND CONFINED INTERFACIAL MODES

We consider a unit cell (of lattice constant a) comprised of
four HRs with differing resonance frequencies (f ), i.e., f4 . f3 .
f2 . f1 [Figure 1(a)]. The frequencies are normalized by c0

a , where
c0 is the velocity of sound in air. As the neck and the cavity of a
HR have inductor- and capacitor-like characteristics, respectively,
the acoustic inductance for the neck can be written as L ¼ ρleff /A,
and the acoustic capacitance for the cavity can be expressed as
C ¼ V/ρc20, where ρ is the density of the air, leff is the effective
length of the neck with end correction, A is the cross-sectional area
of the neck, and V is the cavity volume. The resonant frequency
f ¼ 1

2π
ffiffiffiffi
LC

p for each HR in the unit cell may be adjusted by tuning
the geometry of the neck and the HR cavity.38,39 Geometrical
parameters of HRs are calibrated to yield variation in the f of the
unit cell. The corresponding band structure for the unit cell is
shown in Fig. 1(b), indicating flatbands and bandgaps characteristic
of the HRs (See Sec. A in the supplementary material). In addition
to the length scales, the orientation of a HR would yield a variety
of low and higher order couplings, predicated on the interaction of
sound dipoles. Consequently, the assembly of the HR composed
units would yield rich behavior involving both local and coupled
resonances.

In this paper, we consider a manifestation of the HR unit
assembly for possibilities related to robust sound confinement. We
study confinement arising from the resonance coupling imbedded

in the unit cell. In such an arrangement, there is a relative localiza-
tion of sound in the cell, e.g., as illustrated in the top inset in
Fig. 1(b). However, there is no net overall directionality, as at the
interface of two identical and adjacent cells, there are oppositely
directed HRs, that also can be considered as the unit cell of the
bulk. The unit cells are arranged so as to yield cooperative or non-
cooperative resonances. The acoustic confinement in the former
case is localized over a length scale of the resonator units in the
cell. The subsequent channeling can be considered robust locally.40

Herein, a particular direction is postulated through a specific
arrangement of resonators where transport arises from the thermo-
dynamically reasonable flow of energy. The spatial extent of the
region along which the sound is confined would also influence
the extent of losses, where a larger (or smaller) number of cells
would be involved in bounding the acoustic energy over a larger
(or smaller) distance of propagation.

We indicate how HR constituted unit cell arrangements can
be made to yield specific bands or states that can be used for acous-
tic energy confinement. A ribbon supercell of a number of the pro-
posed HR units yields an equivalent band structure in Fig. 2(a), cf.
the energy dispersion for a single HR unit cell at the bottom of
Fig. 1(b). When an interface is induced, as in the right inset in
Fig. 2(b), through placing two HR constituted bulk structures with
unit cells arranged in opposite directions, the hybridization of the
energy levels across the interface is expected to yield a multiplicity
of twofold states in the bandgap across a range of frequencies, akin
to edge states. The related band structure is indicated in Fig. 2(b),
with the interface (the right inset) now in the middle of the ribbon
supercell. The clockwise reduction of the frequency (in red circular
arrows—at the top) and counterclockwise (in white arrows—at the
bottom) enhancement, along a line in the ribbon supercell of HR
units, together give rise to edge states, originating from the
nominal bands41 as depicted in Fig. 2(b). Subsequently, the energy
flow along either direction is enhanced through such edge state
modes at the interface, based on resonance coupling and local con-
finement in the HR unit cells, as previously discussed. However,
there is no directionality for the acoustic energy at the interface,
over a distance larger than the considered unit cell. This may be
seen through considering additionally a unit cell above the one
depicted in Fig. 1(b). Here, HR units 1 and 4 have on the top as
well as the bottom HR units 2 and 3, implying a frequency depen-
dent directionality/gradation both at the top and bottom with
equivalent energy flow and an overall non-directionality. We noted
that replacing half of the unit cells, at the interface, with a sound
hard boundary (corresponding to the continuity of velocity along
the boundary), yields equivalent effects—see Sec. H in the
supplementary material. Such sound confinement phenomenon is
also not unique to HRs in a square lattice, as similar arrangement
of three or six HRs in a hexagonal lattice would also yield confined
edge states, indicated in Sec. F in the supplementary material.

Due to the local nature of the HR resonances, the edge states
do not bridge the bands that help in the confinement of sound.
The edge states may then be analyzed to probe the dispersion and
propagation of the confined sound. We will discuss next the edge
mode highlighted in red, in Fig. 2(b), which may be construed to
be related to maximal confinement, from the large midgap ratio.42

The confinement of sound related to this edge mode is shown

FIG. 1. (a) Unit cell with Helmholtz resonators arranged in a clockwise order
(red arrow) from high resonant frequency to low resonant frequency. The radius
of the cavities of H1, H2, H3 , and H4 are 2:2

12 a,
1:8
12 a,

1:6
12 a, and

1
12 a, respectively.

The length and the width of the necks are 0:5
12 a. H1, H2, H3, and H4 have reso-

nant frequencies of f1 , f2 , f3 , f4. The circular arrow represents the direc-
tion of decreasing frequency. (b) Band structure of the HR unit cell in (a).
Individual resonant frequencies of the resonators are marked in the figure. Solid
lines are bands in the direction of ΓXMΓ, while dashed lines are bands in the
direction of ΓX0MΓ.
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FIG. 2. Band structure of a ribbon supercell composed of (a) HR unit cells with resonators arranged in only clockwise order and of (b) HR unit cells arranged in opposite
order forming an interface, where additional confined states are found, as highlighted in red and yellow. Periodic boundary conditions are applied. (c) The eigen pressure
field corresponding to an eigenmode marked in red in (b).

FIG. 3. Tuning of the confinement of the acoustic energy at the interface. (a) Band structure of the HR ribbon supercell, where the necks of the HR units are each re-oriented,
so as to face the adjacent HR (top inset). The bottom inset is the eigen pressure field corresponding the edge state (in red). (b) Phase plot of the eigen pressure field of the
edge state mode. (c) The normalized pressure p2 vs the distance perpendicular to the interface [along the dashed line in the inset in (a)], comparing the confinement for an
interface configuration, with the HRs in the unit cell all oriented (i) similarly—as in Fig. 2(c)—or (ii) differently—as in the inset to (a)—for the wavenumber k ¼ 0:1 π

a.
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through the corresponding pressure field at the bottom [Fig. 2(c)],
also see Sec. B in the supplemental material. We have observed,
through extensive computational simulations, the sensitivity of the
confinement to the orientation of the individual HR units within
the unit cell—see Sec. C in the supplementary material.

III. LOCAL CONFINEMENT AND ROBUSTNESS

For instance, consider a situation where the necks of the HR
units are each re-oriented in different directions, so as to face the
adjacent HR, as indicated at the top inset to Fig. 3(a). The edge
states associated with the related interface of the modified unit cell
are indicated in Fig. 3(a), and the related pressure distribution is
shown in the bottom inset of Fig. 3(a). The necks’ orientation will
not change the individual resonance frequencies and the bandgaps
but will influence the cooperative coupling of the HRs and the edge
states. From a plot of the phase of the related eigen pressure fields
in Fig. 3(b), it was observed that there was an induced phase rota-
tion in the unit cell. It agrees with our previous discussion that the
phase rotation direction in the unit cell with half a lattice constant
shift has opposite phase rotation direction. The 2π phase rotation
implies a rotational sound energy flux within the unit cell and
results in the improved confinement at the interface, compared to

the unit cell orientation in Figs. 2(b) and 2(c). The degree of con-
finement, related to acoustic energy density, is monitored in the
direction perpendicular to the interface. A distance (Lc) over which
there is a decrease of the pressure amplitude by 3 dB was taken to
be the measure of the confinement. At k ¼ 0:1 π

a (or λ ¼ 20a), for
example, for the interface in Fig. 2(c), the Lc was recorded as
∼0.219a (or 0:011 λ), while for the interfaces depicted in Figs. 3(a)
and 3(b), a 26% increase in confinement through a decreased Lc of
∼0.162a (or 0:008 λ) was indicated.

We characterize the confinement of sound through an acoustic
impedance (Zac) model, where sound follows a path of minimal
impedance. The ratio of the related pressure field to the ensuing
local sound velocity (vS) is Zac ¼ p

vs
. The related acoustic pressure

field for an HR unit cell related interfacial wave guide, excited by a
point sound source (p ¼ p0ei2πft) on the left—indicated by the *
with normalized frequency of 0.3848 (wavenumber of 0:44 π

a or
0.115 m−1), is plotted in Fig. 4(a), with the corresponding ampli-
tudes of the pressure (p) and velocity (v) in Fig. 4(b). In contrast to
the rapid decay of the confined sound modes in the perpendicular
direction, as in Fig. 3(c), p and vs are relatively unattenuated along
the propagation direction. Standing wave-like profiles, for p and vs,
through the path of propagation were indicated and subsequently
deconvolved so as to yield traveling wave traces (see Sec. D in

FIG. 4. (a) Acoustic pressure field at the interface of two metamaterials, constituted from oppositely arranged HR unit cells. (b) The magnitude of pressure and velocity
along the propagating interface (red dashed line). (c) Spatial FFT of the pressure profile along the interface.
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the supplementary material). The standing waves arise from the
boundaries (since scattering boundary conditions are used for the
simulations) as well as from the periodic and multiple local scatter-
ing of the energy from the individual HR units at the interface,
rationalizing the sound confinement. The spatial fast Fourier trans-
form (FFT) of the pressure profile in Fig. 4(c) indicates peaks at
wavenumbers of 0+ Δk, +2+ Δk, +4+ Δk, +6+ Δk,…, of
π
a, where Δk is the Bloch wave number related to the lattice period-
icity, and integer wavenumbers 0, +2, +4, …, are from the modu-
lation of the unit cell. Specific acoustic impedance of the interface
may be estimated through simplifying the local multiple scattering
phenomenon to a pair of counter-propagating traveling waves (see
Sec. D in the supplementary material).

We comment further on the essential non-band bridging char-
acter of the edge states with the implication of reduced scattering
and relative insensitivity to disorder in frequency and spatial
arrangement. Such perturbative disorder was introduced in the unit
cells at the interface in the ribbon supercell in Fig. 2(b), as shown
in Fig. 5. Frequency disorder was introduced through enlarging (or
reducing) the HR cavity radius, thus decreasing (or increasing) f.
Spatial disorder was simulated by displacing the HRs from their
original location. The center column—corresponding to Fig. 5(b)—
indicates the type of disorder, the left column [Fig. 5(a)] shows the
modifications to the band structure, and the right column
[Fig. 5(c)] depicts the resulting acoustic pressure. The sound source
is situated at the bottom. The top, middle, and bottom insets in

Fig. 5(b) illustrate the cases of reduced frequencies, increased fre-
quencies, and spatially displaced resonators, H1 and H2, at the
interface. It was seen that fabrication irregularities may be tolerated
in the proposed design. From Fig. 5(a), it may be observed that
both frequency and spatial disorders tend to push the edge states
up or down into the bulk bands. The edge state, and the corre-
sponding energy flow, is robust if the disorder is not so much as to
merge the edge band with the bulk bands. Figure 5(c) shows a
driven-mode simulation of sound propagation through a HR unit
cell constituted waveguide that includes all three types of disorders
in Fig. 5(b).

The propagation of sound in Fig. 4(a) is over the straight-line
path, corresponding to the interface of adjacently placed HR units.
Generally, non-collinear sound propagation has been challenging
to implement, given that there seems to be no ideal arrangement of
the unit cells at the turn regions. At the ends of any line, a localized
state is expected that would be either reflected back or dissipated.
Alternately, from the viewpoint of impedance matching, the acous-
tic energy would be not (or totally) reflected if the impedance at
the end is matched (or infinitely large) with various degrees of
reflection for intermediate cases. We observed that the reflection
and transmission could be tailored through HR unit cell configura-
tional changes, e.g., through re-tuning of the frequencies of the res-
onators at the tuning point, taking advantage of the robustness of
the interface modes, discussed previously. For instance, Fig. 6(a)
indicates an arrangement where almost total stoppage/reflection

FIG. 5. (a) Band structure of the ribbon supercell in Fig. 2(b) with frequency or location disorder at the interface. The corresponding disorders at the interface are shown
in (b). Top: interface disorder with reduced frequencies, where the radius of the cavities related to H1 and H2 are increased by ∼10% to 2:4

12 a and
2
12 a, respectively. Middle:

interface disorder with increased frequencies, where the radius of H1 and H2 are decreased by ∼10% to 2
12 a and 1:7

12 a, respectively. Bottom: interface disorder with dis-
placed H1 and H2. (c) The sound pressure corresponding to the indicated frequency and location disorder in (b), along the direction of wave propagation. A point sound
source (p ¼ p0ei2πft ) (*) is situated at the bottom.
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was seen when the edge mode, propagating over the interface,
encounters a 90° sharp turn. An inevitable disorder occurs in the
highlighted corner region with detailed arrangement shown in the
inset, even though the rest of the interface is intact and ordered.
The transmission is calculated to be ∼0.002 (see Sec. E in the
supplementary material). Alternately, a change in the individual HR
radius (which tunes the resonator frequency) can be made where
considerable transmission of the sound energy around a corner is
accomplished [Fig. 6(b)]. The resonance frequencies of the H1, H2,
and H3 in the highlighted corner HR unit cell are modified to
smaller values, i.e., f0:5, f1:5, and f2:5 (H0:5, H1:5, and H2:5), inducing
decreased-frequency disorder to the horizontal interface and an
increased-frequency disorder to the vertical interface in the 90o

turn. A dramatic increase in wave transmission was then observed.
Consequently, acoustic wave confinement around a closed path is
now possible, as shown in Fig. 6(c).

However, it is not clear as to what exactly the corner configu-
ration ought to be for the continued motion of the sound current.
From a consideration of the transmitted power, in terms of the
acoustic intensity I ¼ pvs, before and after the turn, it was
noted that while p is diminished to 0:81 p, vs is reduced to 0:69 vs,
which gives the total transmission of ∼56%—see Sec. E in the
supplementary material)—an increase of ∼300 compared to the
transmission of Fig. 4(d). Perhaps, the magnitude of the transmis-
sion may be used as an approximate measure of the suitability of a
corner geometric configuration. Future study should focus on the
further improvement of the transmission through computational
search and related optimization of the corner geometry of the
individual HRs.

Moreover, while we have indicated acoustic confinement
robust to possible disorders induced by fabrication, in reality, losses
are inevitable and need to be taken into consideration. We consid-
ered the viscous and thermal boundary-layer induced losses due to
acoustic energy dissipation though the narrow necks of the
HRs43–45 and found that the acoustic wave is well confined, i.e., a

3 dB loss is sustained for propagation over 450 unit cells/100 wave-
length (see Sec. G in the supplementary material).

IV. CONCLUSION AND PERSPECTIVE

We have designed a subwavelength acoustic waveguide based
on HRs that has great confinement and is robust over lattice disor-
ders. Taking the advantage of robustness of the waveguide, we are
able to make sound turn sharp corners. The proposed scheme of
HR configuration-based sound confinement can be extended to
three dimensions, where acoustic confinement would now be over an
area. While the direction of propagation is based on the orientation
of the sound source, the proposed scheme does not allow for unidir-
ectional energy transport. Indeed, given the absence of a magnetic
field, Dirac-like points, or nonlinearity in the structure, the propaga-
tion of the acoustic waves is yet bidirectional. However, the presence
of the HRs in a unit induces a local binding, which when added
together over several units, may be construed as the confinement of
sound. Our formulations also allow for an alternate viewpoint of the
specific acoustic impedance in terms of the ratio of the driving pres-
sure of acoustic wave propagation to the local acoustic velocity. A
closed-path acoustic circuit suggests the possibility of confining
sound waves to a very small region, even to a point.

SUPPLEMENTARY MATERIAL

See the supplementary material for comparison between Bragg
bandgap and resonance bandgaps, interfacial modes and the effect
of the HRs’ orientation, impedance and transmission calculation,
HR waveguide with three and six HRs, and the study of the
thermal and viscous losses.
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FIG. 6. (a) A 90° abrupt turn (see closeup of the corner in the inset) in the propagation path with significant energy reflection. (b) A rearrangement of the corner unit cell
by modifying the resonant frequency of the corner HRs (see the inset) yields smoother turns. (c) Acoustic energy confinement in a closed circuit with corner arrangement
adapted from (a).
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