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Abstract

Itis proposed that a lattice, with constituent masses and spring constants, may be considered as a
model system for topological matter. For instance, a relative variation of the inter- and intra-unit cell
spring constants can be used to create, tune, and invert band structure. Such an aspect is obtained
while preserving time reversal symmetry, and consequently emulates the quantum spin Hall effect.
The modal displacement fields of the mass-spring lattice were superposed so to yield pseudospin
fields, with positive or negative group velocity. Considering that harmonic oscillators are the basis of
classical and quantum excitations over a range of physical systems, the spring-mass system yields
further insight into the constituents and possible utility of topological material.

1. Introduction

Inspired by the discovery of topological phases and edge states in electronic materials [1, 2], the possibility of
building related devices for the control of the propagation of light [3—9] and sound [10-18] is being extensively
studied. The related device building blocks may harness three major types of topological phases analogous to
those in condensed matter systems: quantum Hall effect (QHE) [19, 20], quantum spin Hall effect (QSHE)
[21-23], and quantum valley Hall effect (QVHE) [24-27]. The QHE has chiral edge modes, and requires an
external magnetic field to break time reversal symmetry (TRS), which may be accomplished in acoustic and
photonic systems by adding gyroscopic material or external circulators [3, 10-12, 28]. The QSHE is amenable to
TRS, associated with a pair of spin-locked helical modes, and is obtained by introducing strong spin—orbit
coupling [5, 8, 13, 17, 18]. The QVHE generates valley-locked chiral edge states, and exploits the valley degrees of
freedom [6, 29].

It would of much advantage and yield insight, to consider a harmonic oscillator point of view, quite
common in physics, for invoking topological phases. In this respect, a discrete spring-mass based mechanical
system, may constitute a model system for topological structure as related to phononic materials. For
instance, QHE based topological insulators in spring-mass lattices may be created by adding circulating
gyroscopes [11, 28], Coriolis force [30] or varying spring tension [31]. QVHE has been realized in such systems
by alternating the mass at A and B sites of the unit cell of a mechanical graphene-like lattice [29]: figure 1(a).
QSHE-like phenomena has also been explored in spring-mass lattices, through coupled pendula [32], and a
mechanical granular graphene system [33]. However, many of these systems are difficult to implement in
practical applications.

In this paper, we propose a two-dimensional spring-mass system, exemplifying a QSHE topological
insulator, in the acoustic domain. Various trivial and non-trivial band structures may be originated by varying
the masses () and the relative spring constants (k) in the associated lattice. In addition to exhibiting the
topological features that have now become familiar to practitioners in the field, we indicate a novel spin degree of
freedom. The related pseudospins are observed, in frequency domain analysis as the polarization of modal
displacement field of masses in one unit cell: figure 1(a). TRS protected edge modes, incorporating the
propagation of such pseudospins, are shown to exist. This structure may be representative of different phases of
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Figure 1. (a) Hexagonal spring-mass lattice with uniform spring constant k and mass . a; and a, are lattice constants of the unit cell
before zone folding, and b, and b, are lattice constants of the unit cell after zone folding. (b) First Brillouin zone (BZ) before (big
hexagon) and after (small hexagon in orange) zone folding. When looking at 1/12 BZ, the triangle [ M, K] is first folded along the
purple dashed line, then folded along the green dashed line. (c) Band diagram of the lattice in (a) for unit cell of 2 masses, and (d) band
diagram of the lattice in (a) for the expanded unit cell of 6 masses.

matter, as the the spring constant can be view as coupling strength between unit cells in various systems. It can be
applied as one of the possible practical designs of photonic/phononic topological insulators.

A basis for creating a topological material, based on a spring-mass system, to mimic the QSH effect, is to
create intrinsic TRS. We consider a hexagonal lattice of masses and springs arranged in Cs symmetry. The Eand
E' representations are each two-fold degenerate with the individuals being complex conjugates [34].
Consequently, a four-fold degeneracy is required to satisfy TRS and may be enabled through manifesting a
double Dirac cone in the band structure. We achieve a four-fold degeneracy, in the band structure of a spring-
mass constituted lattice by the zone-folding method [8].

2. The spring-mass model and computational methods

We consider a hexagonal lattice with equal masses m connected by linear springs k, as shown in figure 1(a).
The unit cell of this hexagonal lattice consists of 2 masses m! = m* = m, with lattice constants @ and @
(@ | = |@| = a). From Newton’s law, the governing equation Mii = F (u), where M is a diagonal matrix with
the values of the two masses on its diagonal: M = diag{m!, m!, m?, m?}.uisavector constituted from the two
degrees of freedom for each mass—the x and y direction displacements for m' and m* u = {u, u}, ul, uyz} and
Fis the force. We consider a Bloch wave solution of the type u = Ule!(@#1+a%=%0 to the governing equation of
the (g, Dthunitcell, where U = { Ui, U)l,, Uf, Uy2 } is the modal displacement, and -y, and -y, are wave vectors.
A dispersion relation is obtained by solving the eigenvalue problem D(v,, 7,) U = w*MU, with D as a dynamical
matrix (see appendix A).

The band structure of the hexagonal lattice in figure 1(c) exhibits a single Dirac cone at the K (K’) point. The
frequencies are non-dimensionalized as 2 = Lk Subsequently, we fold the first Brillouin zone (BZ) of the

hexagonal lattice, twice, to form a new BZ with 1m/3 of its original area, as shown in figure 1(b). Consequently, the
K (K) point is mapped to the I" point at the center of the BZ, creating a double Dirac cone. The smaller BZ
corresponds to an expanded unit cell in real space of 3 times of the original unit cell area, with 3 x 2 = 6 masses,
and lattice constant b; and b, (b; | = |b2| = /34 = b), asindicated in figure 1(a). The band structure based
on the expanded unit cell is plotted in figure 1(d), and indicates a double Dirac coneat I

To induce a phase transition, in the topological sense, we break the spatial symmetry of the hexagonal lattice,
through changing the spring constants of the connecting masses in the lattice, i.e. distinguishing the intra unit
cell spring constant k; from the inter unit-cell spring constant: k,. Such distinction still preserves the Cg
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Figure 2. (a) Hexagonal spring-mass lattice with intra-cell spring k; (black straight rods) different from inter-cell spring k; (red straight
rods). (b) Band diagram of hexagonal lattice with k; > k,. Modal displacements at I are of p symmetry for the lower degeneracy, and
of d symmetry for the higher degeneracy. (c) Band diagram of hexagonal lattice with k; < k,. Modal displacements at I are of d
symmetry for the lower degeneracy, and of p symmetry for the higher degeneracy.

symmetry of the unit cell. It was found that when k; = k, the band degeneracy at the I point is lifted and yields a
band gap, as indicated in figures 2(b) and (c). With k, and m constant, we continuously change the value of k;
fromk, > kytok; < k;, through which the band gap at I point first closes and then reopens. When k; = k,,
there is no band gap (figures 2(a)—(c)). We study the modes related to this transition for (i) k; > k, and (ii)

ki < k.

3. Results and discussions

3.1. Modal displacement fields in hexagonal spring-mass lattices: the case for pseudospins
The modal displacement and its x and y components, of the masses in the unit cell, at the I" point of the k; > k,
lattice are shown in figures 3(a)—(d). The labeling of the modes in figures 3(a)—(d) follows the nomenclature for
the lower to higher band degeneracy corresponding to figure 2(b). The modal displacements for a given mass in
p1(/dy) are orthogonal to p,(/d,), respectively. The constituent x and y direction displacements are plotted
successively below. Since each mass has two degrees of freedom—the displacements in the x- and the y-
directions, in considering the parities of modal displacements in figure 3, we consider the x- and the y-direction
modal displacement fields separately. We find that the x/y direction displacements fields at I" are of odd and even
spatial parities—of the p_(/ ) and d,2_,2 (/d,,) variety, as inferred both from the sense of the symmetry of the
displacements and stated relationships in the C character table [34]. For instance, the p, (7 ) character is
antisymmetric with respect to the center, even symmetric to the x- (/y-) axis, and odd symmetric to the y- (/x-)
axis, while the d,:_ 2 (/d,,) parity is symmetric with repsect to the center, and even(/odd) symmetric to both the
xand y axes.

Hybridizing the p, /d; and p, /d, modes in a symmetric and antisymmetric manner yields pseudospins [8]

p. = (p, £ip,/2), anddy = (d) & idy) /2. D

Figures 3(e)—(h) illustrates the related phase distribution of p,, p_, d, and d_ in the range of —7 to 7 (see
appendix B). Clearly seen from the phase relationship that harmonic wave propagationin p, /d, and p /d_have
opposite polarizations. Taking the time harmonic component ™" into consideration, due to the orthogonality
of displacements in p,/d; and p,/d,, each mass corresponding to the hybridized mode p, /d rotates in the one
direction, while each massin p /d_ rotates in the opposite direction. The incorporation of the relative motions
of the six masses in the unit cell leads to rotation of the whole displacement field. Such rotation may be

3



10P Publishing

NewJ. Phys. 20 (2018) 123011

Y Zhou et al

T g \ o ™ e = e ~
-’ vl V! #l :
I 1 ! gl :
G i m )l = )
|
I 1 1 :: :I :
I 1o
I +1 1 + :: ¥ 1 + !
1 I
I 1 :' l: .
I I ! II '
I ro g (. I
| [ ol I |
I I - rll I
\ LA VL T [ B G 4’
(g) (h)
d, d
—

Figure 3. (a) p;, (b) p, and (c) d;, (d) d, are total modal displacements for the two two-fold degeneracies at I point when k; = k,.
pyand p, have odd parities, while d; and d, have even parities. x and y direction components to (a) and (b) clearly show p,/p,
symmetry, while those to (c) and (d) that have d,2_ 2/ d,,, symmetry. (e)—(h) are plots of phase relationships between the 6 masses in
one unit cell for p, , p , d, and d_ in color map, indicating the polarization of wave propagation associated with pseudospin up and
pseudospin down.

Figure 4. The spinning of modal displacement field for d, = (d, + id,) /2 asaresult of time domain motion of the masses during
one period T.

considered as one manifestation of a pseudo-spin. One can follow the motion in d. during one time period T:
figure 4, indicating such clockwise orientability of the displacement field.

We find that for the case of k; <k,, the modal displacement fields have exactly the same odd and even spatial

parities, but d; and d, are now associated with the higher two degenerate bands, while p, and p, corresponds to
the lower two bands (figure 2(c)). This demonstrates that band inversion happens at the I" point during the
process of closing and reopening the band gap, and a change in topology of the band structure. Such a change has
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Figure 5. (a) Ribbon super cell consists of 20 non-trivial unit cells cladded by 15 trivial unit cells on each end. The mases and springs

are of the ratio mm—JT = % and k" Kt kNT = 1.2: 1: 0.8, respectively. (b) The band diagram for the ribbon super cell. A pair of

pseudospin up and pseudospin down edge modes are found within the bulk band gap (red and green curves). The inset shows a mini
band gap at the crossing of the two helical modes. Magnitude of modal displacements of the pseudospin up and pseudospin down
modes near the right boundary at = 0. 1% are plotted in (c), from which we can see that they are confined at the edge and decay into
the bulk.

been previously quantified through the spin Chern number [35]. The Hamiltonian on the basis states of
[p., dy, p, d_]canbeobtained (see appendix C) to be of the following form:

M — By? A~y 0 0
A*y_. —M + By? 0 0
He () = r v , , 2
0 0 M — By Ay
0 0 A*y, —M+ By?

d — €

€
where v, = 7, & iy, and v*=7,? + 7, % A = iak, isimaginary (@ > 0),and B < 0. M = Tp indicates

the relative energy of p and d bands, which is positive in the lattice of k; > ky, and negative in the lattice of
ki < ky, respectively. The spin Chern number can be calculated from

Cs = %(sgn(M) + sgn(B)). 3)

Since Bisnegative, C; depends on the sign of M, which leads to C; = O when M > 0,and C; = £1
when M < 0. This means that for the lattice with k; > k,, C; = 0, and the band gap is topologically trivial
(figure 2(b)). When we decrease k; to k; < k, the band gap becomes topologically non-trivial (figure 2(c))
and C; = +1. Therefore, from the topological band theory [1] it would be expected that there would exist
pseudospin-dependent edge modes at the boundary between topologically trivial and topologically non-trivial
lattices.

3.2. Propagating edge modes

The pseudospin-dependent edge modes are vividly illustrated through simulations on a ribbon-shaped lattice
that is periodic in one direction and of the width of one unit cell in the other direction: figure 5(a). Such a
supercell based lattice contains both topologically trivial (T) and non-trivial (NT) units. The NT lattice is
constituted from one row of 20 unit cells, and cladded by two T units of 15 unit cells (we chose the number of T

and NT units so that the band diagram is relatively scale invariant). Here, the masses in the T and NT units lattice

T
arein the ratio % = 1'3%, and spring constants are of the ratio k;': ky: kT = 1.2: 1: 0.8. The inter-cell spring

constant k; is kept the same in both the T and NT units since it connects the two different lattices. The spring
constants and masses were chosen such that the T and the NT units have overlapped band gap as related to the
frequency ranges indicated in figures 2(b) and (c). The band structure of the ribbon supper cell is shown in
figure 5(b) (the frequencies here are non-dimensionalized as {2 = ——). Compared to the band structures in

k2

NT
figure 2(b) and (c), we clearly see two additional states appear within the bulk band gap connecting the lower
bands to the higher bands, as illustrated by red and green lines in figure 5(b). It was noted that these two new
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Figure 6. Time domain simulation of edge wave propagation. The domain is of 24 by 24 unit cells. The mases and springs are of the

T .
ratio 31— = g and k;": kot kNT = 1.2: 1: 0.8, respectively. (a) Sinusoidal excitation force F = Fye™“! applied on a line edge
m

between topologically non-trivial and trivial spring-mass lattices. (b) and (c) are the simulation results with w = w;, = 0.8 %

(frequency within the bulk bands), and w = w, = 1.14 % (frequency within the bulk band gap). (d) Is a spring-mass lattice that

contains a topological edge with a sharp turning, and (e) simulation result on (d) with a force excitation of frequency w.

modes propagate with a group velocity of the same magnitude but opposite signs, and correspond to the
pseudospin up and pseudospin down topological edge modes. There is a mini band gap at the I point of the
zoomed-in band structure in the inset of figure 5(b), due to breaking of Cs symmetry at the boundary of the T
and the NT units (see appendix D). However, this mini band gap is much smaller compared to the bulk band gap
(0.003:0.08), so the pseudospins are preserved, and backscattering of edge states is suppressed as shown in the
time-domain simulations below. We plotted the modal displacement corresponding to the two additional states
of the ribbon lattice near the I point (’YH =0.1 %, b is the lattice constant of the extended unit cell) in figure 5(c).
These modes are confined to the boundary between the T and the NT units, and decay into the bulk, indicative of
edge mode-like character. The appearance of such modes, in the absence of any obvious spin—orbit coupling
indicates attributes of a QSHE topological insulator.

To verify the unidirectional propagation of the topological edge modes, we conducted time-domain
numerical simulations on finite spring-mass lattices consists of both T and NT units. The governing equation for
the spring-mass lattice takes the form i = Au + F(t), where Au is the restoring/displacement-dependent force
due to spring deformations, and F (¢) is a time-dependent excitation. We solve the equivalent ODE:

[Z] = AA [Z] + F(t), where AA = [? ’3] (Iis unitary matrix), using Runge—Kutta explicit time integration

method (RK4) to determine the displacement u at time ¢. Fixed boundary conditions were applied in the
simulations, i.e. masses at the boundaries are connected to springs fixed to the wall.

Figure 6(a) shows the geometry of the modeled spring-mass lattice consisting of a NT and T unit, at the top
and bottom, respectively. Initially all the masses are at rest. To avoid boundary reflection, we enforced an
excitation force F(t) = Fye' on one of the masses in the NT unit close to the middle of the NT-T boundary,

with frequency w = wj, = 0.8 L corresponding to that of the bulk (from the T/NT band structure),

mNT
andw = w, = 1.14 % corresponding to within the band gap, respectively (for example, a lattice with
mNT =1 kgk, = 10°N m~}, w, = 800 Hz, and w, = 1140 Hz). The simulation results in figures 6(b) and (c)
indicate the amplitude of displacement of the masses, and illustrate that an external force (with w = wy) will
propagate into the bulk, while a force (with w = w;) will only excite states that propagate at the edge of the T and
NT domains. A sharp discontinuity turning boundary between T and NT as indicated in figure 6(d)
demonstrates that the edge states were immune to backscattering figure 6(e).

As the indicated pseudospins are symmetrized configurations of modal displacement fields, they are not
prone to selective and individual excitation. However, in another application of the T-NT unit arrangement
shown in figure 7(a), it may be able to separate out the counter-propagating states, as broadly constructed in
figures 3(e)—(h). With F = Fyel* it was seen that when a left-moving state (say, with positive group velocity)
reaches the crossing, it will propagate up to port 1 and down to port 2 along the edges but will not propagate
right to the port 3. Consequently, the trajectory of wave propagation (figures 7(b)—(f)) forms a “I” shape. It
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Figure 7. Pseudospin-dependent wave transport in a waveguide splitter. (a) Waveguide splitter divided into 4 parts, with top leftand
bottom right of non-trivial lattice, and top right and bottom left of trivial lattice. The cross has angle of 60° to keep the unit cells intact.
An excitation force with frequency within the band gap can excite both pseudospin-up and pseudospin down modes. Pseudospin-up
modes are supported to propagate towards the right, but splits into 2 waves at the cross, that exit from port 1 and 2, respectively. But it
is forbidden to exit from port 3, as right-propagate pseudospin-up modes are not supported by the domain to the right of the cross.
(b)—(f) are snapshots of time domain simulation at ¢ = 2000%,, 4000t,, 6000¢,, 8000%, and 10000¢,, where f, is the time step of the
simulation.

was noted that the excited modes are sensitive to boundary conditions, that leads to high amplitude at the
boundary.

4. Conclusions

In summary, we have shown that a mass-spring based lattice system may have attributes related to that of a
topological insulator, in the presence of TRS. Through varying the inter- and inter-unit cell spring constants of
such alattice, for a given mass, a clear and distinct variation of the band structure was seen. A concomitant
change in the modal displacement fields, corresponding to a band inversion, may be generated. The
deconvolution of the fields as well as their hybridization in a symmetric and antisymmetric manner yields a basis
for the creation of pseudo-spins, corresponding to clockwise/counter-clockwise rotation of the modal
displacement vector. Both pseudo spin-up and pseudo spin-down modalities, corresponding to the positive or
negative group velocity are proposed. The existence of polarized edge states as well as corresponding modes was
demonstrated through both frequency domain analysis and time domain simulations. These edge modes are
topologically protected, as they are immune to backscattering when encountering sharp edges. Considering that
harmonic oscillators (which are direct manifestations of spring-mass units) form the basis for many physical
systems, ranging from acoustics to electromagnetics, this work yields a general foundational framework and
related methodology, i.e. modulating band structure and constituent modes through varying the respective
spring constants of the physical system.
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Appendix A. Dynamical matrix for spring-mass lattice

To get the dispersion relations, we evaluate

2

Du = w?u, 4

where D is the dynamical matrix, and u is the displacements of the masses.
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Figure 8. Hexagonal spring-mass lattice with uniform spring constant k and mass . Unit cell (g, I) consist of two masses m,;, ;and m; -

For a two-mass unit cell shown in figure 8, D is derived to be of form

fik 0 i(l + ek £(1 — ek
2 4 4
. 1 1 . .
0 —%k g(l — eMk (Z + Zewl + e%)k
Dy, 72) = — 3 73 3 )
=(1 4 e Mk —(1 —e Mk —=k 0
4( ) 2 ( ) 5
ﬁ(l — e M)k (l + lefim + e*i"/z)k 0 ,ik
| 4 4 4 2 |
The elements of D were obtained through assuming a Bloch wave solution of form u,; = Uelt@an+lan—wn),

Here U = {U, U}l,, U?, Uy2 } is the modal displacement vector, and +, and -, are Bloch wave vectors. Take the

mass ml

.1 inunitcell (g, 1) for example. The force balance for m)

,,1in x direction can be written as

1.1 2 1 0 7T 1 2 LT s
Mg iy ) = k[(uqﬂ,l,x — Uy ,)COS " cos 5 + (ug1, — Ugipr,)sin " cos 5

2 1 ™ Vs 2 1 . Vs
+ (uq,l,x - uq,l,x)cos g Ccos g + (uq,l,y - uq,l)},)sm g COS g:l (6)
Substitute the Bloch solution into equation (6) we get
3 3 . J3 .,
—wlmy Uy = _EkU’l‘ +0U, + Z(1 + eMkU? + T(1 — eMkU}, 7)

which are elements of the first raw of equation (5). Other entries of D can be obtained in a similar manner.

Appendix B. Phase relationship for masses in one unit cell for pseudo spin modes

Modal displacement for each mass in the unitcellin p_ = p, £ ip,and d, = d; £ id, are complex numbers.
We take the phase angle of the displacement for each mass and plot the phase relation of the unit cell as shown in
figures 3(e)—(h).

Take d; = d, + id, for example. From the eigenvalue problem of the dynamical matrix in equation (8),
whenk = 08Nm ',k = INm ,andm = 1 kg, we have the values (in meter) of x- and y- direction modal
displacements for each mass in d; and d, shown as figure 9. The modal displacements and phase relation for d,
can be calculated accordingly. As shown in figure 9, phase plots for x- and y- direction modal displacement fields
show same polarization, and both have the change of 47 in one unit cell, indicative of even parity/quadruple
symmetries.
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Figure 9. Phase relationship between masses in one unit cell for mode d = d; + id,.

Appendix C. Effective Hamiltonian, Berry curvature, spin Chern number, and Z,
invariant

The dynamical matrix D for 6 masses with 12 constituent modal displacements (i.e.
U=I[U, U, U, U, U, U, U, Uy, U, Uy, US, Ugl)is of the form:

D=
r '
sk L Sk 0 0 0 0 0 0 L Sk
2m 4m 4 m 4m 4 m
ko 1k RELY _Lh 0 0 0 kg 0 0 _Bk _Lh
m 2m 4 m 4m m 4 m 4m
3k i3 ki 3k +3k2 7»13(k1 _ kz) 0 0 o 0 —Skzei')l —ﬁkzehl o o
4m 4 m 4m 4 m 4 \m m 4m 4 m
sk 1k ,i(ﬂ — kl) 1k + Sk 0 Rk 0 0 ,ﬁkleiﬁrl ,lﬁei‘n 0 0
4 m 4m 4 \m m 4m 4m m 4 m 4m
o o o o 3k 3k Q(g _ Q) 3k W3k 0 0 3k iyt 1R iy iy
4m 4m 4 \m m 4m 4 m 4m 4m
o o o hk ﬁ(kl _ kz) 1ky I 5 k1 Bk 1k 0 0 i3 kzei’Yl*i'YZ 3 kzehri’rz
m 4 \m m 4m 4m 4 m 4m 4 m 4 m
0 0 0 0 3k _3k 3k 0 3k REL) 0 0
4m 4 m 2m 4m 4 m
0 ki 0 0 Bk Lk o ki lh Bk _lk 0 0
m 4 m 4m m 2m 4 m 4m
0 0 3k B ki 0 0 3k Bk 3k 3k ,ﬁ(ﬁ _ ﬁ) 0 o
4m 4 m 4m 4 m 4m 4m 4 \m m
0 0 ,ﬁﬂe*i’;l ,lﬁe*i’)l 0 0 RENY 1k ,i(ﬂ — ﬁ) Lk + Sk 0 _k
4 m 4m 4 m 4m 4 \m m 4m 4m m
3k Bk 0 0 ,zﬁe*iﬂ*’i"/z Eﬁe*hﬁ’i"/z 0 0 0 0 3k + 3k E(h - Q}
4m 4 m 4m 4 m 4m 4m 4 \m m
Bk 1k 0 0 ﬁkfle*ivﬁrivz ,lﬁe*ivﬁiwz 0 0 0 _k ﬁ{ﬁ — ’LZ] 1k + Sk
4 m 4m 4 m 4m m 4 \m m 4m 4m |

®)

There are 12 bands corresponding to the 12 by 12 matrix D. To investigate the spin-Chern number, we derive the
effective Hamiltonian [36] assuming that the other 8 bands have negligible influence. Modal displacement vector U
can be rewritten as the superposition of p,, p,, di,and d,: U> = ¢p; + ap, + cdi + cady, where ¢, 6, ¢, and ¢4
are coefficients. Based on these assumptions, equation (4) gives

wp 00 0

pur—|® @ 0 Oy )
0 0 wi 0
0 0 0 Wi

From this we get the 4 by 4 effective Hamiltonian on the basis of [ p, p, d; d,]as

H = [p, p, di &I'DIp, p, di ds]. (10)
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And the eigenvalue problem can be written as

wp 00 0
(5] 5 (o]
glel=[% « 0 0 (11)
‘C’i 0 0 w2 0 2
0 0 0 Wi

(Since p,, p,, di, and d, are normalized and orthogonal vectors, [p, p, d; LIT[ P, P, d d;] = 1.) Each element
in H can be approximated to the second order using Taylor expansion.
For lattice with k; < ky, take k; = 0.8, k, = 1 and m = 1. Neglect second-order off-diagonal terms, the

. . . 1
effective Hamiltonian is (here 7, = v, — 572 and Y, = 7372)
w? — 0.16sk2(w§ + %vi) 0 0.2387ik,y, 0.2387ik, s
0 wh — 0.168k2(§7§ + ﬁ) —0.2387ik, 0.2387ik,
HNT = 1 . (12)
—0.2387iky, 0.2387ik, Y4 Wi+ 0.25k2(’y,2( + gvi) 0
—0.23871k, —0.2387ik, 0 Wi+ O.ZSkZ(%vi + 7@)
) . .
— 0 — 0
V2 V2
i i
— 0 —— 0
. V2 V2 .
Since[p, dy p d_] =[p, p, d ]Q, where Q = ] - Hyr can be rewritten on the
0 — 0 —
V2 V2
i i
0 — 0 ——
| 2 V2 |
basisof [p_dy p d_],
Hir = Q'Hxr Q. (13)
Analogous to equation (11),onthe[p, d, p d ]basis
¢ wi 0 0 0 |fcf
+ 2 +
Hir cd_ _|0 wy 0 O cd_. (14)
o 0 0 w* 0|l
a 0 0 0 wifla
We obtain
2 2 2
wp + F(f}/x + 7)/) A7+ 0 0
A*y wi+ EO:+ 7)) 0 0
HI{IT - 2 2 2 > (15)
0 0 wp + FOvx + 75 A
0 0 Ay Wi+ EQR+ 7))
where v, = 7, % iy, A=0.2387ik, E = £,and F = —0.1120k;.
If we set the reference energy level to be %[wf, + Wi+ (E+ F)(%zC + ’Yi)], equation (15) becomes
H 0
Hyr=|" 7 , 16
NT [ 0 H_] (16)
—M + By? Ay 22 -
with H, = = , | where M = Y% whichis negative when k; < ky,and B = u,
A M — By 2

which is also negative. Since Hy has a similar formula as the Bernevig-Hughes—Zhang model [35], the spin
Chern number can be calculated from equation (3). Since M and B are both negative, the spin Chern number
for lattice with k; < ky is &1, which indicates it is topologically non-trivial.
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Figure 10. Projection of pseudo spin eigenvectorson [p, d. p_d_]within the first Brillouin zone for lattice with k; = 0.8,
k=1 andm = 1.
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Figure 11. Berry Curvature and spin Chern number for pseudo spin channels for alattice with k; = 0.8, k, = 1 and m = 1.

The projections of pseudo spin eigenvectorson [p, d, p d_]areplotted in figure 10. From figure 10 we can
see that for the degenerate bands below the band gap, eigenvectors on most of the BZ are p-like, except for near
the I point, where the eigenvectors are d-like. On the other hand, eigenvectors for the higher bands are more
d-like near the I" point and p-like elsewhere. The Berry curvature F,(7,, 7,) [37] for each of the pseudo spin
channels are plotted in figure 11. By integrating the Berry curvature over the BZ [11]

1
Cs= %Z%Z,ﬁ Fr2( ’Yy) > (17)

with values consistent with those previously obtained.
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c—_cl
e
[1]. The calculated spin Chern numbers C, and C; give n; = 1, implying Z, is unity.

Similarly, for alattice with k; > ky, the effective spin Hamiltonian takes the same form as equation (16), but
with M > 0,and B < 0. According to equation (3), C; = 0, which proves that the lattice with k; > k, is
topologically trivial. The projections of pseudo spin eigenvectors with k; = 1.2, k, = 1 and m = 1are plotted
in figure 12, which shows eigenvectors of the lower bands are more p-like, while eigenvectors to the higher
bands tend to be d-like, as expected for an ordinary/trivial insulator.

The Z, invariant is defined as Z, = n, (mod 2), where n, =

is the quantum spin Hall conductivity

Appendix D. Mini band gap due to Cs symmetry breaking at the T-NT boundary

There would indeed be level repulsion/band anti-crossings (mini bandgap) when levels/bands of similar
symmetry intersect, as would be relevant to the slight perturbation from Cg symmetry at the boundary between
the T and the NT regions. The magnitude of the gap could be related to the extent of asymmetry and could, in
principle, be reduced, e.g. through minimizing the effect of C¢ symmetry breaking at the T-NT interface [37].

We indicate such influences in figure 13. The figures have differing relative mass ratios, and ratio of the inter-
cell spring constant (T): intra-cell spring constant: inter-cell spring constant (NT). It can then be seen that as the
asymmetry in mass and spring constants between the T and NT lattices increases, the mini band gap at the
‘crossing’ becomes larger as well.
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