
            

PAPER • OPEN ACCESS

Quantum-spin-Hall topological insulator in a spring-mass system
To cite this article: Yun Zhou et al 2018 New J. Phys. 20 123011

 

View the article online for updates and enhancements.

This content was downloaded from IP address 172.4.33.232 on 29/01/2019 at 04:32

https://doi.org/10.1088/1367-2630/aaf341
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/108098936/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


New J. Phys. 20 (2018) 123011 https://doi.org/10.1088/1367-2630/aaf341

PAPER

Quantum-spin-Hall topological insulator in a spring-mass system

YunZhou1, Prabhakar RBandaru1 andDaniel F Sievenpiper2

1 Department ofMechanical andAerospace Engineering, University of California, SanDiego, La Jolla, CA 92093,United States of America
2 Department of Electrical andComputer Engineering, University of California, SanDiego, La Jolla, CA 92093,United States of America

E-mail: pbandaru@ucsd.edu anddsievenpiper@eng.ucsd.edu

Keywords: topological insulator, elastic waveguides, quantum spinHall effect, acousticmetamaterials

Abstract
It is proposed that a lattice, with constituentmasses and spring constants,may be considered as a
model system for topologicalmatter. For instance, a relative variation of the inter- and intra-unit cell
spring constants can be used to create, tune, and invert band structure. Such an aspect is obtained
while preserving time reversal symmetry, and consequently emulates the quantum spinHall effect.
Themodal displacement fields of themass-spring lattice were superposed so to yield pseudospin
fields, with positive or negative group velocity. Considering that harmonic oscillators are the basis of
classical and quantumexcitations over a range of physical systems, the spring-mass system yields
further insight into the constituents and possible utility of topologicalmaterial.

1. Introduction

Inspired by the discovery of topological phases and edge states in electronicmaterials [1, 2], the possibility of
building related devices for the control of the propagation of light [3–9] and sound [10–18] is being extensively
studied. The related device building blocksmay harness threemajor types of topological phases analogous to
those in condensedmatter systems: quantumHall effect (QHE) [19, 20], quantum spinHall effect (QSHE)
[21–23], and quantumvalleyHall effect (QVHE) [24–27]. TheQHEhas chiral edgemodes, and requires an
externalmagnetic field to break time reversal symmetry (TRS), whichmay be accomplished in acoustic and
photonic systems by adding gyroscopicmaterial or external circulators [3, 10–12, 28]. TheQSHE is amenable to
TRS, associatedwith a pair of spin-locked helicalmodes, and is obtained by introducing strong spin–orbit
coupling [5, 8, 13, 17, 18]. TheQVHE generates valley-locked chiral edge states, and exploits the valley degrees of
freedom [6, 29].

It would ofmuch advantage and yield insight, to consider a harmonic oscillator point of view, quite
common in physics, for invoking topological phases. In this respect, a discrete spring-mass basedmechanical
system,may constitute amodel system for topological structure as related to phononicmaterials. For
instance, QHE based topological insulators in spring-mass latticesmay be created by adding circulating
gyroscopes [11, 28], Coriolis force [30] or varying spring tension [31]. QVHEhas been realized in such systems
by alternating themass at A and B sites of the unit cell of amechanical graphene-like lattice [29]: figure 1(a).
QSHE-like phenomena has also been explored in spring-mass lattices, through coupled pendula [32], and a
mechanical granular graphene system [33]. However,many of these systems are difficult to implement in
practical applications.

In this paper, we propose a two-dimensional spring-mass system, exemplifying aQSHE topological
insulator, in the acoustic domain. Various trivial and non-trivial band structuresmay be originated by varying
themasses (m) and the relative spring constants (k) in the associated lattice. In addition to exhibiting the
topological features that have nowbecome familiar to practitioners in the field, we indicate a novel spin degree of
freedom. The related pseudospins are observed, in frequency domain analysis as the polarization ofmodal
displacementfield ofmasses in one unit cell:figure 1(a). TRS protected edgemodes, incorporating the
propagation of such pseudospins, are shown to exist. This structuremay be representative of different phases of
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matter, as the the spring constant can be view as coupling strength between unit cells in various systems. It can be
applied as one of the possible practical designs of photonic/phononic topological insulators.

A basis for creating a topologicalmaterial, based on a spring-mass system, tomimic theQSH effect, is to
create intrinsic TRS.We consider a hexagonal lattice ofmasses and springs arranged inC6 symmetry. TheE and
E′ representations are each two-fold degenerate with the individuals being complex conjugates [34].
Consequently, a four-fold degeneracy is required to satisfy TRS andmay be enabled throughmanifesting a
doubleDirac cone in the band structure.We achieve a four-fold degeneracy, in the band structure of a spring-
mass constituted lattice by the zone-foldingmethod [8].

2. The spring-massmodel and computationalmethods

Weconsider a hexagonal latticewith equalmassesm connected by linear springs k, as shown infigure 1(a).
Theunit cell of this hexagonal lattice consists of 2massesm1=m2=m, with lattice constants a1


and a2



( a a a1 2= = ∣ ∣ ∣ ∣ ). FromNewton’s law, the governing equation Mu F u ,=̈ ( ) whereM is a diagonalmatrixwith
the values of the twomasses on its diagonal: M m m m mdiag , , , .1 1 2 2= { } u is a vector constituted from the two
degrees of freedom for eachmass—the x and ydirection displacements form1 andm2: u u u u u, , ,x y x y

1 1 2 2= { }and
F is the force.We consider aBlochwave solutionof the type u U e qa la ti 1 1 2 2= g g w+ -( ) to the governing equation of
the (q l, )th unit cell, whereU U U U U, , ,x y x y

1 1 2 2= { } is themodal displacement, andγ1 andγ2 arewave vectors.

A dispersion relation is obtainedby solving the eigenvalue problem D U U, ,1 2
2g g w M=( ) withD as a dynamical

matrix (see appendixA).
The band structure of the hexagonal lattice infigure 1(c) exhibits a singleDirac cone at theK (K′) point. The

frequencies are non-dimensionalized as .
k

m

W = w Subsequently, we fold the first Brillouin zone (BZ) of the

hexagonal lattice, twice, to form a newBZwith 1/3 of its original area, as shown infigure 1(b). Consequently, the
K (K′) point ismapped to theΓ point at the center of the BZ, creating a doubleDirac cone. The smaller BZ
corresponds to an expanded unit cell in real space of 3 times of the original unit cell area, with 3×2=6masses,
and lattice constant b1


and b2


( b b a b31 2= = =
 

∣ ∣ ∣ ∣ ), as indicated infigure 1(a). The band structure based
on the expanded unit cell is plotted in figure 1(d), and indicates a doubleDirac cone atΓ.

To induce a phase transition, in the topological sense, we break the spatial symmetry of the hexagonal lattice,
through changing the spring constants of the connectingmasses in the lattice, i.e. distinguishing the intra unit
cell spring constant k1 from the inter unit-cell spring constant: k2. Such distinction still preserves theC6

Figure 1. (a)Hexagonal spring-mass latticewith uniform spring constant k andmassm. a1 and a2 are lattice constants of the unit cell
before zone folding, and b1 and b1 are lattice constants of the unit cell after zone folding. (b) First Brillouin zone (BZ) before (big
hexagon) and after (small hexagon in orange) zone folding.When looking at 1/12 BZ, the triangle 1 1 1GM K isfirst folded along the
purple dashed line, then folded along the green dashed line. (c)Band diagramof the lattice in (a) for unit cell of 2masses, and (d) band
diagramof the lattice in (a) for the expanded unit cell of 6masses.
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symmetry of the unit cell. It was found thatwhen k k ,1 2¹ the band degeneracy at theΓ point is lifted and yields a
band gap, as indicated infigures 2(b) and (c).With k2 andm constant, we continuously change the value of k1
from k1>k2 to k1<k2, throughwhich the band gap atΓ pointfirst closes and then reopens.When k1=k2 ,
there is no band gap (figures 2(a)–(c)).We study themodes related to this transition for (i) k1>k2 and (ii)
k1<k2.

3. Results and discussions

3.1.Modal displacementfields in hexagonal spring-mass lattices: the case for pseudospins
Themodal displacement and its x and y components, of themasses in the unit cell, at theΓ point of the k1>k2
lattice are shown infigures 3(a)–(d). The labeling of themodes infigures 3(a)–(d) follows the nomenclature for
the lower to higher band degeneracy corresponding tofigure 2(b). Themodal displacements for a givenmass in
p1(/d1) are orthogonal to p d ,2 2( )/ respectively. The constituent x and y direction displacements are plotted
successively below. Since eachmass has two degrees of freedom—the displacements in the x- and the y-
directions, in considering the parities ofmodal displacements infigure 3, we consider the x- and the y-direction
modal displacementfields separately.Wefind that the x/y direction displacements fields atΓ are of odd and even
spatial parities—of the px (/ py) and dx y2 2- (/dxy) variety, as inferred both from the sense of the symmetry of the

displacements and stated relationships in theC6 character table [34]. For instance, the px (/ py) character is
antisymmetric with respect to the center, even symmetric to the x- (/y-) axis, and odd symmetric to the y- (/x-)
axis, while the dx y2 2- (/dxy) parity is symmetric with repsect to the center, and even(/odd) symmetric to both the
x and y axes.

Hybridizing the p d1 1/ and p d2 2/ modes in a symmetric and antisymmetricmanner yields pseudospins [8]

p p p d d di 2 , and i 2 . 11 2 1 2=  =  ( ) ( ) ( )/ /

Figures 3(e)–(h) illustrates the related phase distribution of p+, p−, d+ and d− in the range of p– toπ (see
appendix B). Clearly seen from the phase relationship that harmonic wave propagation in p+/d+ and p-/d- have

opposite polarizations. Taking the time harmonic component e tiw into consideration, due to the orthogonality
of displacements in p1/d1 and p2/d ,2 eachmass corresponding to the hybridizedmode p+/d+ rotates in the one
direction, while eachmass in p-/d- rotates in the opposite direction. The incorporation of the relativemotions
of the sixmasses in the unit cell leads to rotation of thewhole displacement field. Such rotationmay be

Figure 2. (a)Hexagonal spring-mass latticewith intra-cell spring k1 (black straight rods) different from inter-cell spring k2 (red straight
rods). (b)Band diagramof hexagonal lattice with k1>k2.Modal displacements atΓ are of p symmetry for the lower degeneracy, and
of d symmetry for the higher degeneracy. (c)Band diagramof hexagonal lattice with k1<k2.Modal displacements atΓ are of d
symmetry for the lower degeneracy, and of p symmetry for the higher degeneracy.
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considered as onemanifestation of a pseudo-spin. One can follow themotion in d+ during one time periodT:
figure 4, indicating such clockwise orientability of the displacement field.

Wefind that for the case of k1<k ,2 themodal displacement fields have exactly the same odd and even spatial
parities, but d1 and d2 are now associatedwith the higher two degenerate bands, while p1 and p2 corresponds to
the lower two bands (figure 2(c)). This demonstrates that band inversion happens at theΓ point during the
process of closing and reopening the band gap, and a change in topology of the band structure. Such a change has

Figure 3. (a) p1, (b) p2 and (c) d1, (d) d2 are totalmodal displacements for the two two-fold degeneracies at G pointwhen k k .1 2¹
p1 and p2 have odd parities, while d1 and d2 have even parities. x and y direction components to (a) and (b) clearly show px/ py

symmetry, while those to (c) and (d) that have dx y2 2- /dxy symmetry. (e)–(h) are plots of phase relationships between the 6masses in
one unit cell for p ,+ p ,- d+ and d- in colormap, indicating the polarization ofwave propagation associatedwith pseudospin up and
pseudospin down.

Figure 4.The spinning ofmodal displacement field for d d di 21 2= ++ ( )/ as a result of time domainmotion of themasses during
one periodT.
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been previously quantified through the spinChern number [35]. TheHamiltonian on the basis states of
p d p d, , ,+ + - -[ ] can be obtained (see appendix C) to be of the following form:

H

M B A

A M B

M B A

A M B

0 0

0 0

0 0

0 0

, 2eff

2

2

2

2

*

*

g

g g
g g

g g
g g

=

-
- +

-
- +

+

-

-

+

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( ) ( )

where i ,x yg g g=  and 2g = .x y
2 2g g+ A ki 2a= is imaginary (a>0), and B 0.< M

2

d pe e
=

-
indicates

the relative energy of p and d bands, which is positive in the lattice of k1> k ,2 and negative in the lattice of
k1<k ,2 respectively. The spinChern number can be calculated from

C M B
1

2
sgn sgn . 3S =  +( ( ) ( )) ( )

Since B is negative, Cs depends on the sign ofM, which leads to C 0s = when M 0,> and C 1s = 
when M 0.< Thismeans that for the lattice with k1>k ,2 C 0,s = and the band gap is topologically trivial
(figure 2(b)).Whenwe decrease k1 to k1<k ,2 the band gap becomes topologically non-trivial (figure 2(c))
and C 1.s =  Therefore, from the topological band theory [1] it would be expected that therewould exist
pseudospin-dependent edgemodes at the boundary between topologically trivial and topologically non-trivial
lattices.

3.2. Propagating edgemodes
The pseudospin-dependent edgemodes are vividly illustrated through simulations on a ribbon-shaped lattice
that is periodic in one direction and of thewidth of one unit cell in the other direction:figure 5(a). Such a
supercell based lattice contains both topologically trivial (T) and non-trivial (NT) units. TheNT lattice is
constituted fromone rowof 20 unit cells, and cladded by twoTunits of 15 unit cells (we chose the number of T
andNTunits so that the band diagram is relatively scale invariant). Here, themasses in the T andNTunits lattice

are in the ratio ,m

m

1.315

1

T

NT = and spring constants are of the ratio k k k: : 1.2: 1: 0.8.1
T

2 1
NT = The inter-cell spring

constant k2 is kept the same in both the T andNTunits since it connects the two different lattices. The spring
constants andmasseswere chosen such that the T and theNTunits have overlapped band gap as related to the
frequency ranges indicated infigures 2(b) and (c). The band structure of the ribbon supper cell is shown in
figure 5(b) (the frequencies here are non-dimensionalized as

k

m

2
NT

W = w ). Compared to the band structures in

figure 2(b) and (c), we clearly see two additional states appearwithin the bulk band gap connecting the lower
bands to the higher bands, as illustrated by red and green lines infigure 5(b). It was noted that these two new

Figure 5. (a)Ribbon super cell consists of 20 non-trivial unit cells cladded by 15 trivial unit cells on each end. Themases and springs

are of the ratio m

m

1.315

1

T

NT = and k k k: : 1.2: 1: 0.8,1
T

2 1
NT = respectively. (b)The band diagram for the ribbon super cell. A pair of

pseudospin up and pseudospin down edgemodes are foundwithin the bulk band gap (red and green curves). The inset shows amini
band gap at the crossing of the two helicalmodes.Magnitude ofmodal displacements of the pseudospin up and pseudospin down
modes near the right boundary at 0.1

b
g = p
 are plotted in (c), fromwhichwe can see that they are confined at the edge and decay into

the bulk.
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modes propagate with a group velocity of the samemagnitude but opposite signs, and correspond to the
pseudospin up and pseudospin down topological edgemodes. There is amini band gap at theΓ point of the
zoomed-in band structure in the inset offigure 5(b), due to breaking ofC6 symmetry at the boundary of the T
and theNTunits (see appendixD). However, thismini band gap ismuch smaller compared to the bulk band gap
(0.003:0.08), so the pseudospins are preserved, and backscattering of edge states is suppressed as shown in the
time-domain simulations below.We plotted themodal displacement corresponding to the two additional states
of the ribbon lattice near theΓ point ( 0.1 ,

b
g = p
 b is the lattice constant of the extended unit cell) infigure 5(c).

Thesemodes are confined to the boundary between the T and theNTunits, and decay into the bulk, indicative of
edgemode-like character. The appearance of suchmodes, in the absence of any obvious spin–orbit coupling
indicates attributes of aQSHE topological insulator.

To verify the unidirectional propagation of the topological edgemodes, we conducted time-domain
numerical simulations onfinite spring-mass lattices consists of both T andNTunits. The governing equation for
the spring-mass lattice takes the form u Au F t ,= +̈ ( ) whereAu is the restoring/displacement-dependent force
due to spring deformations, and F t( ) is a time-dependent excitation.We solve the equivalent ODE:
u
u

AA u
u F t ,= +
⎡

⎣⎢
⎤
⎦⎥

⎡⎣ ⎤⎦̈ ( ) where AA A
I
0

0
=

⎡
⎣⎢

⎤
⎦⎥ (I is unitarymatrix), using Runge–Kutta explicit time integration

method (RK4) to determine the displacement u at time t. Fixed boundary conditions were applied in the
simulations, i.e.masses at the boundaries are connected to springs fixed to thewall.

Figure 6(a) shows the geometry of themodeled spring-mass lattice consisting of aNT andT unit, at the top
and bottom, respectively. Initially all themasses are at rest. To avoid boundary reflection, we enforced an
excitation force F t F e t

0
i= w( ) on one of themasses in theNTunit close to themiddle of theNT–Tboundary,

with frequency bw w= =0.8 k

m
2
NT corresponding to that of the bulk (from theT/NTband structure),

and 1.14g
k

m
2
NTw w= = corresponding towithin the band gap, respectively (for example, a lattice with

m 1NT = kg,k 102
6= Nm−1, 800bw = Hz, and 1140gw = Hz). The simulation results infigures 6(b) and (c)

indicate the amplitude of displacement of themasses, and illustrate that an external force (with bw w= )will
propagate into the bulk, while a force (with gw w= )will only excite states that propagate at the edge of the T and
NTdomains. A sharp discontinuity turning boundary between T andNT as indicated infigure 6(d)
demonstrates that the edge states were immune to backscatteringfigure 6(e).

As the indicated pseudospins are symmetrized configurations ofmodal displacement fields, they are not
prone to selective and individual excitation. However, in another application of the T–NTunit arrangement
shown in figure 7(a), it may be able to separate out the counter-propagating states, as broadly constructed in
figures 3(e)–(h).With F F e t

0
i= w it was seen that when a left-moving state (say, with positive group velocity)

reaches the crossing, it will propagate up to port 1 and down to port 2 along the edges but will not propagate
right to the port 3. Consequently, the trajectory of wave propagation (figures 7(b)–(f)) forms a ‘T’ shape. It

Figure 6.Time domain simulation of edgewave propagation. The domain is of 24 by 24 unit cells. Themases and springs are of the

ratio m

m

1.315

1

T

NT = and k k k: : 1.2: 1: 0.81
T

2 1
NT = , respectively. (a) Sinusoidal excitation force F F e t

0
i= w applied on a line edge

between topologically non-trivial and trivial spring-mass lattices. (b) and (c) are the simulation results with 0.8b
k

m

2
NTw w= =

(frequencywithin the bulk bands), and 1.14g
k

m

2
NTw w= = (frequencywithin the bulk band gap). (d) Is a spring-mass lattice that

contains a topological edgewith a sharp turning, and (e) simulation result on (d)with a force excitation of frequency .gw
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was noted that the excitedmodes are sensitive to boundary conditions, that leads to high amplitude at the
boundary.

4. Conclusions

In summary, we have shown that amass-spring based lattice systemmay have attributes related to that of a
topological insulator, in the presence of TRS. Through varying the inter- and inter-unit cell spring constants of
such a lattice, for a givenmass, a clear and distinct variation of the band structurewas seen. A concomitant
change in themodal displacement fields, corresponding to a band inversion,may be generated. The
deconvolution of thefields as well as their hybridization in a symmetric and antisymmetricmanner yields a basis
for the creation of pseudo-spins, corresponding to clockwise/counter-clockwise rotation of themodal
displacement vector. Both pseudo spin-up and pseudo spin-downmodalities, corresponding to the positive or
negative group velocity are proposed. The existence of polarized edge states as well as correspondingmodeswas
demonstrated through both frequency domain analysis and time domain simulations. These edgemodes are
topologically protected, as they are immune to backscattering when encountering sharp edges. Considering that
harmonic oscillators (which are directmanifestations of spring-mass units) form the basis formany physical
systems, ranging from acoustics to electromagnetics, this work yields a general foundational framework and
relatedmethodology, i.e.modulating band structure and constituentmodes through varying the respective
spring constants of the physical system.
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AppendixA.Dynamicalmatrix for spring-mass lattice

To get the dispersion relations, we evaluate

Du u, 42w= ( )

whereD is the dynamicalmatrix, and u is the displacements of themasses.

Figure 7.Pseudospin-dependent wave transport in awaveguide splitter. (a)Waveguide splitter divided into 4 parts, with top left and
bottom right of non-trivial lattice, and top right and bottom left of trivial lattice. The cross has angle of 60° to keep the unit cells intact.
An excitation force with frequencywithin the band gap can excite both pseudospin-up and pseudospin downmodes. Pseudospin-up
modes are supported to propagate towards the right, but splits into 2waves at the cross, that exit fromport 1 and 2, respectively. But it
is forbidden to exit fromport 3, as right-propagate pseudospin-upmodes are not supported by the domain to the right of the cross.
(b)–(f) are snapshots of time domain simulation at t=2000t0, 4000t0, 6000t0, 8000t0 and 10000t0, where t0 is the time step of the
simulation.
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For a two-mass unit cell shown infigure 8, D is derived to be of form

D

k k k

k k k

k k k

k k k

,

3

2
0

3

4
1 e

3

4
1 e

0
3

2

3

4
1 e

1

4

1

4
e e

3

4
1 e

3

4
1 e

3

2
0

3

4
1 e

1

4

1

4
e e 0

3

2

. 51 2

i i

i i i

i i

i i i

1 1

1 1 2

1 1

1 1 2

g g = -

- + -

- - + +

+ - -

- + + -

g g

g g g

g g

g g g

- -

- - -

⎜ ⎟

⎜ ⎟

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

( )

( ) ( )

( )

( ) ( )

( )

( )

The elements ofDwere obtained through assuming a Blochwave solution of form u U e .q l
qa la t

,
i 1 1 2 2= g g w+ -( )

HereU U U U U, , ,x y x y
1 1 2 2= { } is themodal displacement vector, and 1g and 2g are Blochwave vectors. Take the

mass mq l,
1 in unit cell (q l, ) for example. The force balance for mq l,

1 in x direction can bewritten as

m u k u u u u

u u u u

cos
6

cos
6

sin
6

cos
6

cos
6

cos
6

sin
6

cos
6

. 6

q l q l x q l x q l x q l y q l y

q l x q l x q l y q l y

,
1

, ,
1

1, ,
2

, ,
1

, ,
1

, 1,
2

, ,
2

, ,
1

, ,
2

, ,
1

p p p p

p p p p

= - + -

+ - + -

+ +
⎡
⎣⎢

⎤
⎦⎥

̈ ( ) ( )

( ) ( ) ( )

Substitute the Bloch solution into equation (6)we get

m U kU U kU kU
3

2
0

3

4
1 e

3

4
1 e , 7q l x x y x y

2
,

1 1 1 1 i 2 i 21 1w- = - + + + + -g g( ) ( ) ( )

which are elements of the first raw of equation (5). Other entries of D can be obtained in a similarmanner.

Appendix B. Phase relationship formasses in one unit cell for pseudo spinmodes

Modal displacement for eachmass in the unit cell in p p pi1 2=  and d d di1 2=  are complex numbers.
We take the phase angle of the displacement for eachmass and plot the phase relation of the unit cell as shown in
figures 3(e)–(h).

Take d d di1 2= ++ for example. From the eigenvalue problemof the dynamicalmatrix in equation (8),
when k 0.81 = Nm–1, k 12 = Nm–1, and m 1= kg, we have the values (inmeter) of x- and y- directionmodal
displacements for eachmass in d1 and d2 shown as figure 9. Themodal displacements and phase relation for d+

can be calculated accordingly. As shown infigure 9, phase plots for x- and y- directionmodal displacement fields
show same polarization, and both have the change of 4p in one unit cell, indicative of even parity/quadruple
symmetries.

Figure 8.Hexagonal spring-mass latticewithuniform spring constant k andmassm. Unit cell (q l, ) consist of twomasses mq l,
1 and m .q l,
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AppendixC. EffectiveHamiltonian, Berry curvature, spinChernnumber, and Z2
invariant

The dynamicalmatrixD for 6masses with 12 constituentmodal displacements (i.e.
U U U U U U U U U U U U U, , , , , , , , , , ,x y x y x y x y x y x y

T1 1 2 2 3 3 4 4 5 5 6 6= [ ] ) is of the form:
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There are 12bands corresponding to the12by 12matrix D.To investigate the spin-Chernnumber,wederive the
effectiveHamiltonian [36] assuming that the other 8bandshavenegligible influence.Modal displacement vectorU
canbe rewritten as the superpositionof p ,1 p ,2 d ,1 and d :2 U c p c p c d c d’ ,1 1 2 2 3 1 4 2= + + + where c ,1 c ,2 c ,3 and c4

are coefficients. Basedon these assumptions, equation (4) gives
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From this we get the 4 by 4 effectiveHamiltonian on the basis of p p d d1 1 1 2[ ]as

H p p d d D p p d d . 101 2 1 2 1 2 1 2= [ ] [ ] ( )†

Figure 9.Phase relationship betweenmasses in one unit cell formode d d di .1 2= ++
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And the eigenvalue problem can bewritten as
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(Since p ,1 p ,2 d ,1 and d2 are normalized and orthogonal vectors, p p d d p p d d I .1 2 1 2 1 2 1 2 =[ ] [ ]† )Each element
in H can be approximated to the second order using Taylor expansion.

For lattice with k k ,1 2< take k 0.8,1 = k 12 = and m 1.= Neglect second-order off-diagonal terms, the

effectiveHamiltonian is (here
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Analogous to equation (11), on the p d p d+ + - -[ ]basis
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where i ,y xg g g=  A= k0.2387i ,2 E= ,k

6
2 and F= k0.1120 .2-

If we set the reference energy level to be E F ,p d x y
1

2
2 2 2 2w w g g+ + + +[ ( )( )] equation (15) becomes
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which is negative when k k ,1 2< and B ,F E

2
= -

which is also negative. Since Hs
NT has a similar formula as the Bernevig–Hughes–Zhangmodel [35], the spin

Chern number can be calculated from equation (3). Since M and B are both negative, the spinChern number
for lattice with k k1 2< is 1, which indicates it is topologically non-trivial.
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The projections of pseudo spin eigenvectors on p d p d+ + - -[ ] are plotted infigure 10. Fromfigure 10we can
see that for the degenerate bands below the band gap, eigenvectors onmost of the BZ are p-like, except for near
the G point, where the eigenvectors are d-like. On the other hand, eigenvectors for the higher bands aremore
d-like near the G point and p-like elsewhere. The Berry curvature , 37x y12 g g( ) [ ] for each of the pseudo spin
channels are plotted infigure 11. By integrating the Berry curvature over the BZ [11]

C
1

2 i
, , 17s x y12

x y
å åp

g g=
g g

( ) ( )

with values consistent with those previously obtained.

Figure 10.Projection of pseudo spin eigenvectors on p d p d+ + - -[ ]within thefirst Brillouin zone for latticewith k 0.8,1 =
k 12 = and m 1.=

Figure 11.Berry Curvature and spinChern number for pseudo spin channels for a lattice with k 0.8,1 = k 12 = and m 1.=
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The Z2 invariant is defined as Z ns2 = (mod 2), where ns
C C

2
s s= - 

is the quantum spinHall conductivity

[1]. The calculated spinChern numbers Cs
 and Cs

 give n 1,s = implying Z2 is unity.
Similarly, for a lattice with k k ,1 2> the effective spinHamiltonian takes the same form as equation (16), but

with M 0,> and B 0.< According to equation (3), Cs=0, which proves that the lattice with k k1 2> is
topologically trivial. The projections of pseudo spin eigenvectors with k 1.2,1 = k 12 = and m 1= are plotted
infigure 12, which shows eigenvectors of the lower bands aremore p-like, while eigenvectors to the higher
bands tend to be d-like, as expected for an ordinary/trivial insulator.

AppendixD.Mini band gap due to C6 symmetry breaking at the T–NTboundary

Therewould indeed be level repulsion/band anti-crossings (mini bandgap)when levels/bands of similar
symmetry intersect, as would be relevant to the slight perturbation from C6 symmetry at the boundary between
the T and theNT regions. Themagnitude of the gap could be related to the extent of asymmetry and could, in
principle, be reduced, e.g. throughminimizing the effect of C6 symmetry breaking at the T–NT interface [37].

We indicate such influences infigure 13. Thefigures have differing relativemass ratios, and ratio of the inter-
cell spring constant (T): intra-cell spring constant: inter-cell spring constant (NT). It can then be seen that as the
asymmetry inmass and spring constants between the T andNT lattices increases, themini band gap at the
‘crossing’ becomes larger as well.

Figure 12.Projection of pseudo spin eigenvectors on p d p d+ + - -[ ]within thefirst Broullouin zone for latticewith k 1.2,1 =
k 12 = and m 1.=
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