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ABSTRACT OF THE DISSERTATION 

 

Anisotropic Wetting Property of Superhydrophobic Surfaces and Electrokinetic Flow on Liquid-

Filled Surfaces 

 

by 

 

Bei Fan 

 

Doctor of Philosophy of Engineering Science (Mechanical Engineering) 

 

University of California San Diego, 2019 

 

Professor Prabhakar R. Bandaru, Chair 

 

Understanding the wetting property of rough surface is critical in guiding droplets and novel 

superhydrophobic surface design. The Cassie-Baxter model and Wenzel model are always used to describe 

the totally non-wetting and completely wetting states, however, there were few discussions about the 

intermediate state. Through measuring the contact angles of groove patterned surfaces in different groove 

orientations, the anisotropic wetting properties of groove patterned superhydrophobic surface were 

investigated. The degree of water penetration into the grooves was experimentally observed and it was 

found that the degree of water penetration was different with groove orientations, which would affect the 

corresponding contact angle. Besides guiding droplets, superhydrophobic surfaces are also very important 

in microfluidic due to their ability to generate fluid slip and flow enhancement. After a deeper understanding 
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of the wetting property of groove patterned superhydrophobic surface, I further investigated its important 

role in microfluidics. In this dissertation, I mainly focus on electrokinetics on groove patterned surface and 

liquid-filled slippery surfaces, a new kind of surface by filling low surface tension oil into the interstices of 

groove patterned surfaces. I experimentally measured the streaming potential on flat parylene surface, air-

filled groove patterned surface and liquid-filled surfaces and compared their effects in streaming potential 

enhancement. The liquid-filled surfaces were shown to be able to enhance the generated streaming potential 

due to its slippery property and liquid-oil interface charges. As the electrokinetic on liquid-filled surfaces 

is a new phenomenon, the underlying physics is still not clear. I further investigated the influences of filled 

oil properties and groove orientation on streaming potentials and fluid slip. Oils with different densities, 

viscosities, dielectric constant, conductivities and surface tensions were filled into the interstices of groove 

patterned surfaces to make different types of liquid-filled surfaces. The streaming potentials on liquid-filled 

surfaces with different oils were experimentally measured. An empirical relationship between streaming 

potential and oil properties was found and the effects of electrical properties, such as interface charge 

density and dielectric constant of filled oil, on fluid slip were also studied. Finally, the groove orientation 

was varied to study the tensorial effects on streaming potential. Through both streaming potential 

measurement and theoretical analysis, it was found that the streaming potential at 45° was always smaller 

than the arithmetic mean of those at 0° and 90°, and the pressure gradient in the transvers direction generated 

by tensorial effects was important in the streaming potential modification. My work will be important in 

guiding droplets, flow patterning, lab-on-chip devices and the development of electrokientic based power 

sources.  
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Chapter 1 Introduction 

 

1.1 Wetting models on rough surface 

When a water droplet contacts with a solid surface, there exists a thermodynamic equilibrium state 

of the three phases that are liquid phase, vapor phase and solid phase and form a contact angle (𝜃𝑐) as shown 

in Figure 1.1. Through the force balance at the contact line or triple line, the contact angle can be calculated 

using the Young equation1: 

                                                       𝛾𝑆𝐴 − 𝛾𝑆𝐿 − 𝛾𝐿𝐴𝑐𝑜𝑠𝜃𝑐 = 0                                                        (1.1) 

𝛾𝑆𝐴  is the solid-air interface energy, 𝛾𝑆𝐿  is the solid-liquid interface energy and 𝛾𝐿𝐴  is the liquid-air 

interface energy. 

 

Figure 1.1 (a) Liquid droplet on flat surface and the formation of contact angle, (b) Cassie and (c) Wenzel 

state on rough surface. 

 

When the liquid droplet contacts with a rough surface, the Cassie and Wenzel model are usually 

used to describe the wetting state of the substrate. The Cassie state, indicating in Figure 1.1(b), describes 

the completely non-wetting state at which the liquid droplet will stay above the pattern. The Wenzel state 

in Figure 1.1(c) describes the totally wetting state and the liquid will completely fill into the interstices of 

the rough surface. 

1.4 Electrokinetics 
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When electrolyte contacts with a solid surface, there will form an electrochemical double layer 

(EDL) structure due to the mismatch of dielectric constant (ε). Generally, the electrolyte with a larger 

dielectric constant flows over a material with smaller dielectric constant, the solid surface will be negatively 

charged2. At the electrolyte-solid interface, the negative charged solid interface will attract positive counter-

ions near the solid surface and form the doubly layer structure. The first layer will be stern layer which 

consists fixed positive ions adhered to the solid surface and those positive ions can not move with electrolyte. 

The second layer is diffuse layer which contains mostly positive ions which can move with the fluid flow. 

The characteristic thickness of EDL is defined as Debye length 𝜆𝐷 as indicated in Figure 1.2. The 𝜆𝐷 =

√
𝜀0𝜀𝑟𝑘𝐵𝑇

2𝑁𝐴(𝑧𝑒)
2𝐼

, 𝜀0 is the dielectric constant of free space, 𝜀𝑟 is the relative dielectric constant of the electrolyte, 

𝑘𝐵 is Boltzmann constant, T is the temperature, 𝑁𝐴 is Avogadro’s number, z is the number of charge of the 

ion, e is the elementary electron charge and I is the concentration, the 𝜆𝐷~
9.6

√𝐼
 (the units of 𝜆𝐷 and I are nm 

and mM) for electrolytes composed of ions with single charge. Under a pressure driven flow, say the 

pressure drop is ∆𝑃 = 𝑃2 − 𝑃1, as indicated in Figure 1.2, the positive ions in the diffuse layer will move 

with the fluid and accumulate at the right end of the channel, due to the ion accumulation, an imbalance 

between the ion concentration is built up between the ends of the channel which can induce a potential 

difference termed as streaming potential2. The generated streaming potential, 𝑉𝑠, is related to the dielectric 

constant 𝜀 (=𝜀𝑟𝜀0), viscosity 𝜂, conductivity 𝜎, the zeta potential 𝜁 of the surface and the pressure drop ∆𝑃 

through2: 

                                                                     𝑉𝑠 =
𝜀𝜁

𝜂𝜎
∆𝑃                                                                                 (1.2) 

The derivation of Eqn. 1.2 is based on the following assumptions2: (a) negligible surface 

conductivity, (b) thin EDL, (c) the Debye-Huckel assumption that the wall potential is of the order of ~ 26 

mV (=𝑘𝐵𝑇/𝑒, where 𝑘𝐵 is the Boltzmann constant ~ 8.6 × 10−5 eV/K, T is the temperature at ~ 300 K in 

the ambient, and e is the elementary electronic charge = 1.602 × 10−19 C). As electrokinetic flow can 
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convert mechanical energy to electricity and there is no moving parts in the structure, it is promising to be 

developed as microchannel battery3, the power sources for MEMS system and wearable devices.  

 

Figure 1.2 Electrokinetic flow on a flat surface under a pressure drop ∆𝑃 (=P2 – P1). 𝜁 is the zeta potential 

which is the potential at the shear plan where fluid starts to move. 

 

1.3 Motivation 

Superhydrophobic surfaces which are inspired by lotus leaf and other plant leaves that can not get 

wet by water are important in both static and dynamic fluid phenomena and have essential practical 

applications, such as self-clean surface, anti-icing, oil-water separation and drag reduction4. To make 

superdydrophobic surfaces, the traditional method is to make micro/nano scale roughness that will trap air 

to increase the water contact angle and decrease the tendency of the binding of water to the surface. The 

wetting property of water on rough surfaces are important in superhydrophobic design. As discussed 

previously, the Cassie model and Wenzel model are usually used to describe the wetting status of liquid 

droplet on rough surface. However, there are other conditions that these two models don’t consider. For 

example, both of these two models don’t consider the effect of anisotropic property of the roughness on the 

wetting property. Besides, these two models only describe the two extreme wetting states that are 

completely wetting and non-wetting states, and there were few discussions abut the intermediate wetting 

state between these two models. To have a better understanding of the liquid wetting states on rough 
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surfaces, more work should be done to consider the anisotropic property of the superhydrophobic surface 

and the partial wetting state to make modifications of current Cassie and Wenzel model.  

Besides studying the static liquid wetting on superhydrophobic surface, my work also extended to 

the continuous and dynamic flow on superhydrophobic due to the important role of superhydrophobic 

surface in fluid drag reduction and flow enhancement. In electrokinetic field, traditional researches were 

mainly on flat surface which introduced non-slip boundary condition at the electrolyte-solid interface and 

yielded low streaming potential3, which limited the applications of electrokinetic as practical power sources. 

Then it was proposed that using superhydrophobic surface can introduce fluid slip for streaming potential 

enhancement5.  Since the electrical potential decays away from the surface, the further the shear plane is 

from the substrate boundary the smaller the equivalent 𝜁 and the obtainable 𝑉𝑠. One possible method to 

enhance the⁡⁡𝜁 is then to introduce fluid slip at the substrate surface, where the shear plane is moved as close 

as possible to the substrate. In this case, the zero velocity boundary condition at the surface (y=0) is replaced 

with a Navier slip condition: 𝑢𝑠 (y=0)= 𝑏
𝜕𝑢⁡(𝑦=0)

𝜕𝑦
) with b as the slip length (a length below the surface at 

which the fluid effectively has a zero velocity)6,7. The 𝜁is modified by the introduction of the Navier 

condition to8:  

        𝜁 = ⁡𝜓𝑜(1 +⁡
𝑏

𝜆𝐷
)           (1.3) 

Hence, a larger slip (implying a larger b) relative to a 𝜆𝐷 for a given solution (with a fixed ε, σ and 

η could be beneficial in harnessing large 𝑉𝑠 – through a closer coupling of the fluid velocity profile to the 

charged double layer. In this context, it was previously indicated9 that relatively large values of b of the 

order of ~ 6 mm may indeed be obtained in superhydrophobic surfaces fabricated through a roll-to-roll 

processing methodology10. As 𝜆𝐷~
9.6

√𝐼
 , 𝜆𝐷  is around 9.6 nm with 1 mM NaCl, and a consequent 𝑏/𝜆𝐷 of 

~ 625, one may be led to expect up to three orders of magnitude larger 𝜆𝐷. However, there have been 

theoretical suggestions that the superhydrophobic surfaces may not yield the predicted degree enhancement 

due to the non-charged liquid-air interfaces introduced by superhdrophobic surfaces11. Most of the work on 
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electrokinetics on superhydrophobic surfaces was theoretical and computational analysis, experimental 

efforts are necessary to investigate the practical situation. In my dissertation, I will also mainly focus on 

the experimental study on electrokinetics on superhydrophobic surfaces and will also come up with the 

solution to streaming potential enhancement.  
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Chapter 2 Anisotropy in the hydrophobic and oleophilic characteristics of 

patterned surfaces 

 

2.1 Abstract 

A significant difference in the wetting angles of water and oil was observed on patterned substrates, 

combining interstitial spaces along with hydrophobic solid surfaces, as a function of orientation. The 

difference was ascribed to a modification of the liquid – interstice interfacial surface energy, due to different 

degrees of penetration of the liquid. A roughness metric, related to the ratio of the areas related to the extent 

of which the liquid infiltrates the interstice to the geometrically determined area is proposed. The study has 

implications in modulating surface slip behavior and would be of importance in guiding liquid droplets, 

e.g., in electrophoresis.  

 

2.2 Introduction 

The extent of wettability of a surface is dependent on the underlying substrate surface energies (γ). 

Considering the substrate-wetting liquid energy (γSL), the substrate-ambient energy (γSA), and the liquid - 

ambient (e.g., air) energy (γLA), two related well-known parametric measures1 are the spreading parameter, 

S, and the contact/wetting angle: θ - determined through the Young relation, i.e.,  

                   S =γSA – (γSL + γLA)                       (2.1a) 

                 θ = cos-1[ (γSA – γSL)/ γLA]                                              (2.1b) 

The extension to predict the wetting behavior of rough or patterned surfaces has been done through 

the Cassie-Baxter/fakir model: Figure 2.1(a) or the Wenzel (W) model: Figure 2.1(b), which broadly deal 

with two extremes related to complete exclusion (/inclusion) of the interstices in the solid substrate by the 

liquid, respectively. In this letter, we investigate the plausible intermediate regime, i.e., Figure 2.1(c), where 
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there would be partial liquid penetration into patterned substrates: Figure 2.1(d). The parameters of 

relevance in the Cassie-Baxter and Wenzel models are the respective area fractions of the interstice surface 

area (ϕI) and the solid surface area (ϕs), where ϕI + ϕs = 1, and a somewhat arbitrarily defined roughness 

parameter: r, as the ratio of the total surface area to the projected/apparent surface area, which would of 

course depend on the measurement scale. For instance, the Cassie-Baxter model relates the overall wetting 

angle (θnet) to the wetting angle on the air in the interstice (i.e., θint) and that in the constituent solid (i.e., 

θsol) as: 

Cos (θF
net) = ϕI Cos (θint) + ϕs Cos (θsol)                                  (2.2a) 

Alternately, the Wenzel model indicates a roughness (r) related θW
net, through:  

Cos (θW
net) = r Cos (θsol)                     (2.2b) 

Per recommendations12 on the proper use of Eqn. 2.2, we did not assume that the liquid-vapor interface was 

smooth, and consider liquid penetration into the troughs of the rough surface13. An effective medium 

approach (EMA)9,10 was implicitly assumed to average the water penetration, whereby the extent of the 

wetting liquid is much larger compared to the underlying texture, and the perturbations to the liquid drop 

in the interstice could be considered small.  

However, a major issue is that these models do not explicitly consider the anisotropy of the 

underlying substrate texture. The wetting angle related to the placement of a liquid drop (say, of radius, R 

~ 0.3 cm) on a patterned surface (e.g., with 20 μm (=w) ridges, with a ϕI = 0.5) would not be expected, 

through use of the fakir and the Wenzel models to be a function of the orientation of the ridges. However, 

experimentally we did notice a change, with a larger contact angle when the drop would be translated 

perpendicular to the ridges compared to an orientation parallel to the ridges: Figure 2.2.  The two contact 

angles imply differing radii of curvature for the impregnated liquid parallel and perpendicular to the ridges1.   
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Figure 2.1 Schematic images of the wetting behavior, as indicated through the (a) Cassie-Baxter based 

fakir model, corresponding to the total absence of impregnation of the interstices by the liquid state, and 

the (b) Wenzel model, corresponding to the total impregnation by the liquid. I discuss here (c) the 

intermediate regime, corresponding to partial penetration of the interstices, (d) SEM image of the 

morphology of the ridged surfaces used for the experiments. 

 

Much previous work on the anisotropy of wetting on textured surfaces14 has not quantitatively 

estimated the penetration of liquid into interstices15. Measurements on sub-micron scale triangular grooves 

indicated16 a state where the water completely penetrates the grooves. It was also discussed17 that a water 

droplet may be suspended on patterns (modified with hydrophobic coatings18) and does not directly contact 

the substrate. Along with contact angle hysteresis19, a proposal that the contact angle decreases as 

penetration progresses was posited12. A related aspect of interest concerns the wetting dynamics, e.g., in 

low Reynolds number (Re) flow. The fakir and the Wenzel models are often implicitly assumed in fluid 

flow20 for understanding the efficacy of hydrophobic/super-hydrophobic surfaces in reducing fluid drag and 

inducing slip21, through reduced shear stress at the moving liquid-air interface. It is then the aim of this 

paper to examine the influence of anisotropy related to the substrate22 on the wetting characteristics in static 

and quasi-static scenarios and lay out the physical rationale behind liquid penetration into the grooves. 
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2.3 Methods 

The tested Parylene-C coated patterned surfaces (on Si substrates) were patterned through standard 

photolithography. Briefly, coated photoresist on a Si wafer (n-type, <110>, and thickness of 500 µm) was 

patterned, developed and subject to reactive ion etching (RIE) to a trench depth of about 95 µm. The 

photoresist was then removed and the surface was coated with 1 µm thick Parylene-C. The ridged pattern 

surface morphology is shown in Figure 2.1(d). The average width (w) and height (h) was ~ 18 μm and ~ 95 

μm, respectively, at a distance (d) of 18 μm. We define an interstice fraction: ϕI, as the ratio [= d/ (d + w)], 

with distances measured through scanning electron microscopy. Two different substrate patterns, 

lithographically designed for ϕI = 0.5 and ϕI = 0.75, were used. To probe the related anisotropic wetting 

characteristics, a liquid drop (i.e., 10 μL water, with γLA of 72.8 mJ/m2, and 3 μL⁡oil: Krytox® GPL10423, 

with γLA of 18 mJ/m2) was placed on the Parylene-C coated patterned substrates (using a reported24 γSV of 

46.2 mJ/m2), and the contact angles observed in two orthogonal orientations at 20℃ using Ramé-Hart 

Model 190 Contact Angle Goniometer. For comparison, the contact angle of water drops on the Parylene-

C coated substrate (flat and unpatterned) was ~ 94.60, with a corresponding γSL of 51 mJ/m2 estimated 

through Eqn. 2.1(b). Detailed contact angle measurements as a function of orientation are indicated through 

Figure 2.2 and listed in Table 2.1.  
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Figure 2.2 Schematics of the top views of a water droplet, on a ridged surface, (a) parallel, and (b) 

perpendicular, to the ridges. (c) and (d) indicate the corresponding edge-on shapes, respectively. 

 

Table 2.1 The measurements of the contact angle, as a function of the orientation of the ridges. The values 

in the brackets indicate the corresponding γSL (= γSL, mod), in units of mJ/m2. 

 

 

 

 

 

2.4 Results and Discussions 

We denote the S-L energies on the patterned surfaces as γSL,mod, as modified from the values obtained 

from those on unpatterned Parylene-C coated surfaces. The shapes of the droplets were broadly elliptical, 

with major axis along the ridge/groove, indicative of macroscopic preferential wetting in this direction. In 

all cases, the underlying pattern texture enhanced the degree of hydrophobicity, compared to the planar 

substrate, as indicated by an increase of the wetting angle to greater than 94.60. It was noted that the contact 

angles on the patterned surfaces differ significantly, e.g., by ~ 360, (the difference between 1470 in the 

  

𝜙𝑠 = 0.5 

 

𝜙𝑠 = 0.25 

 ⟶ 
 

111.3° (72) 

 

124.9° (87) 

↑ 
 

147.0° (107) 

 

148.5° (108) 
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perpendicular orientation vs. the 1110 in the parallel direction) and correlated to the variation in the 

estimated γSL (= γSL, mod) from ~ 107 mJ/m2 to ~ 72 mJ/m2.  

Generally, when a liquid drop is placed on a patterned surface a small deflection/bowing (δ) of the 

liquid into the interstices (I) is expected based on gravitational considerations1: Figure 2.1(c). We consider 

the surface energy related to the liquid over the interstices as γLI, e.g., γLI = γLA, if the interstice is mostly air 

(A). Here, for a liquid drop of radius R, and an interstitial length of d, from elementary geometrical 

considerations, δ ~ d2/8R. Such deflection is also favored on energetic considerations25, when γLI is 

smaller/comparable to the γSL. However, considering gravitational forces in addition to surface tension, 

δwould be proportional to R3/lc
2, and the lateral spread (lspread) on the substrate would be proportional to 

R2/lc where lc (=√
𝛾
𝜌𝑔⁄ ) is the capillary length, with ρ as the liquid density and g the acceleration due to 

gravity. Consequently, a larger δ or lspread would be favored by a larger/heavier drop and a smaller γ. Then, 

for a given drop size, the drop infiltrates into the interstice or spreads to lower the net γ. For a large liquid 

drop on top of a patterned surface, where R >> w and d, the net γ, could be formulated through:  

                  γSL, mod = ϕs γSL + ϕI
’ γLI          (2.3) 

Here, ϕI
’ is related to the extent to which the liquid penetrates the interstice and may not necessarily be 

equal to the geometrically patterned ϕI. While we designed our patterns: see Figure 2.1(d), with a ϕI (=ϕs) 

= 0.5, a smaller ϕLI (/ ϕLA) would implicate a larger ϕI
’ when other parameters in Eqn. 2.3 are fixed. The 

computed γSL,mod would then be a better metric to estimate the spreading (S) instead of the γSL.  

A measure of drop spreading26 could occur due to a very small pressure gradient, additional to the 

lspread. When a liquid drop is moved parallel to the direction of the ridges, a given unit of the drop is 

constantly in contact with the underlying solid or interstitial region, during the entire trajectory of the 

motion. However, when the liquid drop is moved perpendicular to the direction of the ridges, the drop unit 

alternates contact between the underlying solid and the interstitial region. Consequently, in the latter case, 

the moving liquid drop does not benefit from penetrating further into the interstice, as in the former situation. 
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It would also be expected that a larger air fraction would increase the penetration and further decrease the 

extent of wetting on top of the patterned surface, manifesting a larger contact angle: Table 2.I. It is pertinent 

to note that that such impregnation of the liquid into the interstices yields an overall lower macroscopic 

wetting of the surface of the patterned substrate27.  

Using Eqn. 2.3, with a computed γSL, mod of ~ 72 mJ/m2 (from Table 2.1), ϕs = 0.5, γSL of 51 mJ/m2, 

and γLI ~ 72.8 mJ/m2, we obtain a ϕI
’ of 0.64: Table 2.2(a). Alternately, with γSL. mod of ~ 107 mJ/m2, and ϕs 

= 0.5, ϕI
’ is ~ 1.12: Table 2.2(a). It is to be noted that as 𝛾𝐿𝐼 > 𝛾𝑆𝐿, the liquid would be in intimate contact 

with the solid surface. Then, the ϕs and the related 𝛾𝑆𝐿  would not change and be equal to the 

geometrical/patterned value. The solid-liquid interfacial area could then be essentially considered flat. In 

both cases, the obtained ϕI
’ is greater than the patterned ϕI of ~ 0.5. The corresponding ϕI

’ values, with a ϕs 

(or a ϕI of ~ 0.75) of ~ 0.25, were 1.02 and 1.31 – see Table 2.2(a), for the parallel and perpendicular 

orientation, respectively.  Generally, spread of liquid into the groove would be expected to since γSL (~ 51 

mJ/m2) is less than γLI (~ 73 mJ/m2); this would be in addition to the gravity induced penetration into the 

interstice. 
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Table 2.2 The values of the fraction: ϕI
’, corresponding to the extent to which the liquid penetrates the 

interstices of the ridged surfaces, for (a) water, and (b) oil, as estimated from Eqn. 2.3. 

(a)  

𝜙𝑠 = 0.5 

 

𝜙𝑠 = 0.25 

 

⟶  

0.64 

 

1.02 

↑  

1.12 

 

1.31 

 

(b)  

𝜙𝑠 = 0.5 

 ⟶  

0.80 

↑  

0.90 

 

Correlating the contact angle measurements in Table 2.1 and the corresponding ϕI
’ in Table 2.2(a), 

we can find that larger water penetration will result in larger ϕI
’ and contact angle, and the anisotropy of 

wetting angles can be attributed to the different degrees of water penetration in different directions. We also 

directly observe water penetration via confocal microscopy (using a Photron FASTCAM camera): Figure 

2.3 and inset. The side-view images, on the bottom left and right of Figure 2.3(b) indicate both non-uniform 

and partial penetration of the liquid (red dotted lines), as well as full penetration into the interstices, 

respectively. Our studies preclude evaporation related considerations28. 
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Figure 2.3 (a) Confocal microscopy imaging of a water drop indicates a penetration of liquid into the 

interstices, of ~ 6 μm as indicated in the inset. The red circle relates to the scan profile of the inset, where 

the vertical axis is related to the depth of the interstice, while the horizontal axis represents the distance 

along the interstices, above the patterned surface, (b) The side view of a water drop placed on the patterned 

substrate. The bottom left inset indicates the presence of water (partial penetration) in the interstices, 

through the reflecting contrast (from the white patches encompassed by the dotted red lines) and 

corresponding to the scan profile in the inset of (a). The bottom right inset indicates the infiltration of water 

(full penetration) into the interstices. 

 

The obtained γSL. mod values, together with the degree of penetration of the liquid into the interstices, 

are intermediate to the solid substrate surface energies (~ 46.2 mJ/m2) and the summation of the surface 

energies of the solid substrate and the liquid of ~ 119 mJ/m2 (= 72.8 mJ/m2 + 46.2 mJ/m2), where water was 

completely penetrating the interstices and tending to avoid the top solid substrate. The anisotropic 

tendencies in the underlying substrate modulate the extent of wetting/hydrophobic character.  

We additionally tested the influence of anisotropy through the placement of Krytox® GPL104 oil 

on the patterned substrates, with a patterned ϕs of 0.5. It was noted that the contact angles parallel and 

perpendicular to the ridges, was ~ 21.0° and ~ 30.1° respectively. For reference, the contact angle of the oil 

drop on the unpatterned Parylene-C coated surface was ~ 24.1°, implying a γSL of 29.6 mJ/m2, from Eqn. 

2.1(b). While the smaller angles indicate a greater oleophilic character for the patterned surfaces, we 

estimate from Eqn. 2.3, correspondingly higher ϕI
’ of ~ 0.8 and ~ 0.9, respectively, as in Table 2.2(b) – 

indicating again an area enhancement of the oil in the interstice. Contrasting the time-dependent behavior 

of the water and the oil on the patterned surface: Figure 2.4, while the shape of water did not change much 
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with time with little spreading, the oil drop spreads along and into the grooves quickly. A film propagates 

in advance of the oil drop indicating the enhanced oleophilic character due to the ridges. 

 

Figure 2.4 The time-dependent spreading of (a) water and (b) Krytox GPL104 oil, on the ridged surface. 

While the shape of the water drop was relatively stable, the oil drop spreads quickly into the grooves, with 

a film (outlined in a dotted red line) advancing ahead of the drop.  

 

2.5 Conclusion 

Based on the results of our measurements and analyses, it is concluded that the anisotropy of 

wetting is related to the liquid penetration, where a larger effective air fraction implies larger penetration, 

yielding a larger contact angle.  In most studies29 related to the influence of patterned surfaces on inducing 

hydrophobic behavior, the degree of liquid penetration into the interstices has not been much considered6. 

The ratio of the estimated ϕI
’ to the ϕI (which may be larger or smaller than unity) would enable the definition 

of a roughness metric, in contrast with the traditional1 definition: Eqn. 2.2(b). We have indicated that a 

larger penetration, with a larger interfacial area/contact angle and lower shear would be of significance in 

modulating hydrophobic and surface slip behavior. The concomitant traversal direction dependent 

penetration of the liquid into the interstices may also be related to the system size as well as a shear-

dependent effective slip length30. Related considerations would also be of importance in guiding liquid 

droplets, e.g., in electrophoretic applications31, the design of drag-reducing super-hydrophobic surfaces6,21, 

etc. Future work would focus on the study of liquid flow dynamics as a function of the degree of anisotropy 

of the underlying patterned surfaces. 
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Chapter 3 Enhanced voltage generation through electrolyte flow on liquid-

filled surfaces 

 

3.1 Abstract 

The generation of electrical voltage through the flow of an electrolyte over a charged surface may 

be used for energy transduction. Here, we show that enhanced electrical potential differences (i.e., 

streaming potential) may be obtained through the flow of salt water on liquid-filled surfaces that are 

infiltrated with a lower dielectric constant liquid, such as oil, to harness electrolyte slip and associated 

surface charge. A record-high figure of merit, in terms of the voltage generated per unit applied pressure, 

of 0.043 mV Pa−1 is obtained through the use of the liquid-filled surfaces. In comparison with air-filled 

surfaces, the figure of merit associated with the liquid-filled surface increases by a factor of 1.4. These 

results lay the basis for innovative surface charge engineering methodology for the study of electrokinetic 

phenomena at the microscale, with possible application in new electrical power sources. 

 

3.2 Introduction 

The motion of an aqueous electrolyte, such as salt water, over a surface may be harnessed for the 

generation of electrical voltage32. Indeed, the exploration of such electrokinetic phenomenon, and their 

possible  use for energy conversion, have a long history, extending over the past two centuries (from 

Morrison & Osterle33 and cited references). The relevant potential difference, termed as streaming potential 

(Vs), arises due to the relative motion of charged34 species in the electrolyte, with respect to the fluid channel 

substrate with residual charges31. While superhydrophobic (SH) surfaces6 have been posited to increase the 

ion velocity and the resultant potential difference, such enhancement has not been observed to date, due to 

the inability of the air in the SH surfaces to hold charge35. Here, we monitor the flow and measure the Vs of 

higher dielectric constant (ε) NaCl based electrolyte (consisting of Na+ and Cl- dissolved in water) over a 
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lower ε  solid substrate/surface with an induced negative charge2,36, in a microfluidic channel37. The 

electrically compensating positive counter-ions reside within the adjacent electrical double layer (EDL)38, 

which consists of an inner layer with fixed counter-ions adsorbed onto the surface and a diffuse layer with 

mobile counter-ions, with a thickness of the order of the Debye length (λD). On application of a pressure 

difference (ΔP) across the two ends of the channel, say, through a mechanical pump: Figs. 3.1(a) - (c), the 

electrolyte flow would be mainly constituted from the mobile counter-ions in the diffuse layer, with the 

consequent charge separation yielding a streaming potential (Vs), proportional to the ε ( =ε0εr – with ε0= 

8.854. 10-12 C2 N-1 m-2 as the free space permittivity, and εr as the relative permittivity of electrolyte e.g., ~ 

80 for 0.1 mM NaCl solution), the zeta potential (𝜁) at the edge of the shear plane where the mobile ion 

motion occurs, and varying inversely with the dynamic viscosity of the electrolyte (η), and bulk electrolyte 

conductivity (κ), as described through the Helmholtz-Smoluchowski model8,36: 

                                     𝑉𝑆 =⁡
𝜖𝜁

𝜂𝜅
∆𝑃                     (3.1) 

The 𝜁 is considered close to the substrate – electrolyte liquid interface, and is significant in that it 

determines the electrical potential that may be utilized2,36 for the Vs. In the flowing electrolyte itself, there 

is a close to exponential decay of the surface potential over38 λD. It should be noted that Eqn. 3.1 is based39 

on the assumptions of negligible surface (/substrate) conductivity and a very small EDL thickness25, with 

Poiseuille flow of the electrolyte. Moreover, there is an implicit assumption of the no-slip boundary 

condition40, where liquid adjacent to the substrate wall has a zero velocity with a finite flow velocity only 

at a certain distance (corresponding to the shear plane) into the fluid. Consequently, the 𝜁 would be related 

to the electrical potential  at the edge of the shear plane in electrokinetic flows over smooth surfaces36,39. 

Most work on harnessing the Vs through electrokinetic effects, to date, has been concerned with fluid flow 

over smooth surfaces (where the scale of roughness is smaller than λD), and consequently very small 

potential differences of the order of  18 mV may be predicted and obtained8, in  correspondence to Eqn. 

(3.1), i.e., for 0.1 mM NaCl, with εr ~ 80, η ~ 10-3 Pa ∙ s, 𝜁 ~ 25 mV, κ ~ 10-3  S m-1, with ΔP ~ 1000 Pa.  
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Figure 3.1 Electrokinetics over patterned and fluid filled surfaces. The phenomena were investigated 

(a) through monitoring the streaming potential (Vs) of salt water, under pressure driven flow, in a 

microchannel (of length 11.8 cm, width of 0.9 cm and height of ~250 μm). The upper surface of the channel 

was PDMS (poly-dimethyl siloxane) while the lower fluid-solid surface, was engineered with the fluid (f) 

such as oil or air. The velocity (u) profile with fluid slip, due to the pressure difference (P2 – P1) applied by 

syringe pump is indicated, (b) The schematic of the flow arrangement in the microchannel and its (c) 

experimental realization, wherein the top and the bottom surfaces were separated by a silicone rubber spacer 

to adjust the microchannel height, and Ag/AgCl electrodes were inserted in reservoirs at either end to 

measure the Vs. While (d) liquid flow over an AFS (air filled surface) yields a finite slip velocity (us), and 

slip length (b) the (e) flow of an electrolyte such as salt water yields a finite Vs due to surface charge 

(indicated as negative, here) induced influence on the electrolyte ions. (f) The Vs can be made significantly 

larger when the air is replaced by a water-immiscible liquid, such as oil yielding a liquid filled surface 

(LFS). 

 

With the objective of obtaining significantly larger Vs, we indicate briefly the principles of our 

approach, which first involved the modulation of the effective 𝜁, through introducing fluid slip via groove 

patterned surfaces (air/liquid filled surface (AFS/LFS)) and modifying surface charges at the substrate 

surface. It has previously been considered, based on molecular dynamics based simulations41, that slip may 

mobilize the Stern layer, significantly enhancing the 𝜁. The broad concept is that the shear plane/surface 

of shear (at which the electrolyte flow velocity is zero) is to be moved as close as possible to the substrate. 

As the surface electrical potential decays away from the substrate, the closer the shear plane is to the 

substrate boundary the larger the 𝜁 with concomitantly increased Vs. Here, the zero velocity boundary 

condition at the surface (y=0) would be replaced with a Navier slip condition: us (y=0)= 𝑏
𝜕𝑢⁡(𝑦=0)

𝜕𝑦
) with b 

as the slip length20,42, us as the slip velocity: Fig. 3.1(d). The larger the b, the greater the fluid velocity at 
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the surface by a factor of (1 +⁡
𝑏

𝜆𝐷
). A related apparent increase43 in the 𝜁   and the Vs may then be 

consequently obtained44. As much relatively large values of b of the order of 10 μm were thought to be 

obtained through the use of superhydrophobic (SH) surfaces10, and given a λD of 9.6 nm with 1 mM NaCl, 

a b/λD of ~ 1000 is estimated, yielding large Vs. While non-uniform surface conduction45,  e.g., as related 

to slip to no-slip transitions, may reduce such an enhancement a finite b would yet contribute to Vs, and 

may be aided by surface charge induced forces.  

Our experiment results show that the Vs of NaCl electrolyte over LFS is increased by 1.4 times 

compared with that of electrolyte over AFS, which is due to the harness of both the slip and surface charge 

at liquid-liquid interface. 

 

3.3 Methods 

Design considerations and fabrication of air filled surfaces and liquid filled surfaces. The 

critical parameters in our channel surface design are (a) structural, i.e., the interstitial fraction of AFS/LFS: 

ϕ - the ratio [= d/ (d + w)], with an average ridge width (w) and spacing (d), as indicated in Fig. 3.2(a), (b) 

dimension, the channel length (L) and channel width (W) should be much larger than channel height (H), 

then the channel can be treated as two infinite parallel plates and the flow is Poiseuille flow, (c) pressure 

gradients, i.e., over a range of 0-1000 Pa, with higher pressures yielding greater streaming potentials (Vs), 

and (d) the nature of the filling fluid, easier for oil with low surface tension to penetrate into the grooves. 

For instance, we have used in our electrokinetic flow experiments, ϕ ~ 0.5, 0.9 cm wide, 11.8 cm long and 

250 μm high channel, with a pressure difference of ~ 1200 Pa, using GPL oil as a filling liquid, to generate 

maximal Vs.  

The LFS were fabricated through filling oil into the grooves of a patterned surface, fabricated 

through photolithography and dry-etching. A Si wafer (n-type, <110>, thickness 500 µm) was cleaned with 

acetone and IPA, rinsed by DI water, and subsequently baked at 180 °C for 5 minutes. Negative photoresist 
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(NR9-3000) was coated on the Si wafer (3000 rpm for 40 s) and baked at 120 °C for 60 s. The pattern was 

defined through a mask (using the EVG 620) and developed (RD6) for 1 minute. Then the resist patterned 

wafer was subject to dry etching (using Oxford Plasmalab 100 RIE/ICP) to yield a trench depth (h) ~ 95 

µm. The photoresist was then removed (using RR2 photoresist remover) over ~ 12 hours and any residues 

was further removed (using PVA TePla PS100 at 120 sccm, 200 W for 90 s). The grooved surface was 

coated with Parylene-C (using PDS 2010 Parylene Coater) to a thickness of ~600 nm.   

For LFS, oils, e.g., Dupont Krytox GPL 104, Castor oil, etc. was filled into the grooves of the 

patterned surface. The air-/liquid- patterned surfaces were imaged using environmental scanning electron 

microscopy (ESEM):  FEI/Phillips XL ESEM and the FEI Quanta FEG 250 ESEM. We have indicated, 

e.g., in Figure 3.2(c) that a lower ϕ - the ratio of the average groove width to the overall period, yields a 

larger Vs. 

Choice of applied pressure and related flow rate. The electrolyte flow rate in the channel, 

constituted from rectangular plate geometry46, was modulated through a syringe pump: Figure 3.1(c), and 

was transduced to an applied pressure (∆𝑃)  based on the Poiseuille relation: ∆𝑃 =
12𝜂𝐿𝑄

𝑤ℎ3
 (𝑄 is flow rate, L 

is channel length of ~ 11.8 cm, and h the channel height of ~ 250 μm). The ΔP over the channel length 

(where the other end was left open to atmosphere) motivated the pressure gradient driven flow, and for the 

experiment was in the range of 200 to1200 Pa, as measured through a manometer (UEI EM152 Dual 

Differential Input Manometer). It was observed that when the ΔP was larger (/smaller) than 1200 Pa (/200 

Pa), that the generated streaming potential Vs was not stable. 

Choice of liquid to fill the interstices in the liquid filled surfaces. For the fabrication of the LFS, 

the filling liquid (e.g., Krytox® GPL 104 and castor oil) was chosen primarily on the basis of immiscibility 

with water/electrolyte. Additional criteria would be a low surface tension - for better penetration into the 

interstices, low viscosity and a smaller dielectric constant – to reduce electrolyte-oil interfacial shear stress. 

We observe that the parylene coated Si surface was oleophilic (/hydrophobic), and that the chosen liquid or 

oil could penetrate the interstices easily: Figure 3.3(a).  
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3.4 Results 

Voltage generation on air filled surfaces. To further understand the issues related to 

electrokinetics over surfaces with slip, we conducted experiments - see Figs. 3.1(b) and 1(c), where the 

electrolyte flow was driven in a microfluidic channel (of length: 11.8 cm, width: 0.9 cm and height: 250 

μm) by a syringe pump with ΔP varied in the range of 0 -  1200 Pa to measure the Vs over ridged pattern 

surface morphology: termed as AFS (air filled surface): Fig. 3.1(e). The substrate material of AFS is silicon, 

coated by 600 nm hydrophobic parylene-C. The patterns were characterized through an interstitial/air 

fraction: ϕair, through the ratio [= d/ (d + w)], with an average ridge width (w) and spacing (d): Fig. 3.2(a). 

We report results on samples with ϕair = 0.5, d = w = 18 μm, for ϕair = 0.75, d = 27 μm and w = 9 μm.  
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Figure 3.2 Streaming potential of air-filled surfaces. (a) A scanning electron microscope (SEM) 

micrograph of the grooved pattern surfaces with silicon as the substrate covered by parylene-C (thickness 

≈ 600 nm), parameterized on the basis of the solid surface width (w = 18 μm), groove width (d = 18 μm), 

and pattern height (h⁡≈⁡95 μm), and the air fraction:  ϕair [= d/ (d + w) = 0.5], and a solid fraction:  ϕs= 1-

ϕair. The flow direction is perpendicular to the grooves and indicated by the arrow. Scale bar is 100 μm. (b) 

The typical response of streaming potential (Vs) was measured, for a ϕs=0.5 AFS, through a syringe pump 

driven pressure, e.g., with an applied pressure of 440 Pa, 0.1 mM L-1 NaCl here. The red dotted line indicated 

the average flow velocity in the channel. The measured voltage difference between a baseline value (Vo) 

and a final value (Vf) was considered as the Vs. (c) The measured Vs (0.1 mM NaCl solution) on an AFS 

(i.e., Air0.5, the subscript indicating the ϕair) scales linearly with the applied pressure (in the range of 200-

1200 Pa), in accord with the Helmholtz-Smoluchowski model (Eqn. 3.1) with a lower value for Vs obtained 

for a smaller (/larger) ϕs (/ϕair) and rationalized as due to the absence of surface charges, and contributing 

zeta potential 𝜁, in the air regions. (d) The Vs scales with the salt water electrolyte conductivity and related 

concentration (Ic) through a log [Ic]/ [Ic] variation for both AFS (Air0.5) and parylene coated flat surface 

(Flat) (concentration varying from 0.1mM L-1 to 5 mM L-1 at 200 Pa for (d)).  

 

The consequent voltage-time trace: Fig. 3.2(b), was used to determine the Vs – monitored through 

a high resistance (>10 GΩ) voltmeter (Keithley 2700) connected across the Ag/AgCl electrodes placed at 

either ends of the channel: Fig. 3.1(c). However, a significant enhancement was not obtained for AFS, with 

an estimated6 b of ~ 10 μm. It was interesting to note that a lower Vs was obtained for a larger ϕair (i.e., 

smaller ϕs) for which a larger b would be expected: Fig. 3.2(c). Moreover, very little increase over a flat 

unpatterned surface was obtained comparing Air0.5 and Flat: Fig. 3.2(d). The lower Vs of AFS may be 
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rationalized as due to the absence of a surface charge in the air regions25, which overwhelms the contribution 

of the slip.  

While the data here seems to indicate the general validity of Eqn. 3.1, in terms of a linear Vs - ΔP 

plot, the slope of the obtained experimental curves would then be directly connected to the ε, 𝜁, η, and the 

κ. Such parameters are then intimately connected, i.e., while independent variation would be difficult to 

discern experimentally, theoretical or computational input (which is outside the purview of the present 

experimental work) may be able to yield guidance for explicit dependence.  The net Vs has been construed 

to be related to a weighted summation of  𝜁 in the no-slip region (over the solid fraction of the surface, i.e., 

ζNS) and the slip region (i.e., over the air of the AFS, i.e., 𝜁𝑆) 35. The very small 𝜁𝑆 would adversely affect 

the Vs and as seen through our experiments, overwhelms the slip length related contribution. Related 

correspondence of the obtained Vs to the 𝜁 as well as the electrolyte conductivity, which is proportional to 

Ic (the counter-ion concentration) was determined through a log [Ic]/ [Ic] dependence: Fig. 3.2(d). 

Increased voltage on liquid filled surfaces. Subsequently, we deployed patterned surfaces where 

the air pockets were infiltrated by a water immiscible liquid, e.g., oil, of a higher density compared to the 

NaCl electrolyte: Fig. 3.3(a). Such liquid filled surfaces (LFS) were hypothesized to yield a finite 𝜁𝑆 at the 

oil interfaces, in addition to a non-zero b. The LFS were fabricated through replacing the air in groove 

patterned arrays by water-immiscible liquid, such as oil, and may be designed to exhibit various degrees of 

fluid slip27,47,48, as well as electrical voltages,– significantly larger than on air-filled or SH surfaces. The oil 

filling was found to be reliable and stable. 
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Figure 3.3 Enhanced streaming potential at liquid filled surfaces. Enhanced streaming potential (Vs) 

was obtained by (a) filling the grooves with salt water immiscible oil, e.g., Krytox GPL 104, (scale bar is 

100 μm) (b) a significantly larger Vs was obtained for an GPL 104 oil filled surface (i.e., GPL0.5, with the 

subscript now indicating the interstitial fraction of oil), compared to one with air (Air0.5) and even compared 

to a Flat solid substrate (all measured using 0.1 mM L-1 NaCl solution with applied pressure as 1200 Pa). 

(c) The Vs could be larger or smaller compared to the control AFS, depending on the choice of the liquid in 

the LFS, e.g., GPL oil and castor oil (Castor0.5), respectively. 

 

Additionally, the use of oil with a lower εr compared to the flowing electrolyte would mean that 

the electric field from the wall is effectively propagated. Through the use of Krytox GPL 104 oil (εr ~ 2.1, 

η ~ 340 cP), a significant enhancement of the Vs by 50%, to around ~ 52 mV, compared to that of Air0.5 was 

observed: Fig. 3.3(b), attesting to the utility of the LFS. However, it was noted that the obtained Vs critically 

depends on the choice of the oil in the LFS. Broadly, a larger εoil seems to yield a lower Vs. For instance, a 

factor of two smaller value was obtained for a castor oil (εr ~ 4.7, η ~ 312 cP) filled LFS: Fig. 3.3(c). The 

enhanced van der Waals energy of interaction1 between the oil and the electrolyte, proportional to the 

dielectric constants, and the related mutual electric polarizabilities causes a larger friction. The consequent 

movement of the shear plane away from the solid substrate would result in a lower zeta potential and Vs.  

The electrolyte flow over the LFS as well as the adjacent solid surface was parameterized46 through 

the use of a material dependent surface charge density (σ) related to ζ =
𝜆𝐷𝜎

𝜖
 and fluid slip at the respective 

interfaces. From literatures, for the top surface of the channel (constituted from poly-dimethyl siloxane: 

PDMS), σPDMS
49 ~ 18 mC m-2, while for the bottom patterned surfaces, we use σoil

50 ~ 1.8 mC m-2 and 

σparylene
51 ~ 3.6 mC m-2. The σ and the velocity slip is inhomogeneous along the length of the channel, but 

constant along the channel width. The no-slip hydrodynamic boundary condition was assumed to hold true 

at all solid-electrolyte interfaces, while a Navier slip boundary condition over the flowing electrolyte-oil 
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interface was assumed, with a finite slip velocity: us and slip length: b. For a hydrophobic surface, the b 

may be approximated6 to be of the order of d, i.e., ~ 18 μm.  A correspondence to a Cassie state-like channel 

flow (with no electrolyte penetration into the grooves of the patterned surface) for LFS surface may be seen. 

It should be noted that simulations considering the continuity of tangential shear stress across the 

electrolyte-oil interface also obtained the Vs very close (within 1 %) to the results obtained through an 

assumption of a slip length.  

Modeling of electrolyte flow over the liquid filled surfaces. We partition39 the pressure gradient 

driven electrolyte flow, following experiment, over the LFS as the superposition of (i) hydrodynamic flow, 

with fluid slip over electrically neutral surfaces, and (ii) an electrokinetic flow, with no-slip fluid flow over 

flat electrically charged surfaces: Figs. 3.4(a) – (c). A multiphysics model coupling the Nernst-Planck-

Poisson (N-P-P) equation with the Stokes Equation, was deployed to determine the volumetric charge 

density profiles. The velocity profile combined with the simulated volumetric charge density profile along 

the channel, as indicated in Fig. 3.4 (d), arises due to the difference of ionic concentrations between the 

counter-ions and co-ions. The resultant horizontal electric field, is responsible for the observed streaming 

potential (Vs). The calculated average electrolyte velocity of 6 cm s-1 is in agreement with that expected 

from Poiseuille flow along the channel, with the estimated us at the oil-electrolyte interface of ~ 2 cm s-1 at 

ΔP ~ 1200 Pa. Additionally, and given the relatively large groove widths, the influence of the surface 

conductivity on the obtained results would be relatively small44. 
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Figure 3.4 Parametrization and modeling of charged fluid-solid surfaces. (a) The surface charge 

density (σ) of an AFS (air filled surfaces) varies between zero (at the air) and a finite value at the solid, 

while a nominally planar LFS (liquid filled surfaces) maintains a larger value of the σ. The electrokinetics 

on the LFS was considered in terms of a superposition of (b) hydrodynamic flow, with fluid slip over 

electrically neutral surfaces and (c) an electrokinetic flow, with no-slip fluid flow over electrically charged 

surfaces, and solving the coupled Nernst-Planck-Poisson (NPP) equation along with the Stokes Equation, 

to determine the (d) velocity profile as well as the volumetric charge density (ρ) profiles. The insets indicate 

the computed variation of the ρ at the top PDMS surface and the bottom LFS. 

 

3.5 Discussion  

Excellent agreement of the simulations with experimentally observed values of the streaming 

potential was observed through considering a reduced εr ~ 28, over a distance of ~ 3λD proximate to the 

LFS and an εr ~ 78 beyond - correspondent to the bulk solution. Such aspect is in accord with the use of 

different values of the dielectric constant for the inner and outer regions of a solid -solution interface39. The 

LFS, consisting of both oil as well as solid surfaces, may yield an uneven shear plane with fascinating 

implications for novel electrokinetic phenomena52,53, such as localized concentration polarization44,  etc. 

Our work also indicates that a heterogeneous surface could be patterned through the use of discrete surface 

charge density or applied potentials, mimicking a superhydrophobic surface, and making a connection with 

electro-wetting applications, as well as with significant literature on the modeling and parameterization of 

liquid flows on striped surfaces exhibiting alternate regions of slip and no-slip, with54,55 and without30 

surface charge.  

A more detailed investigation of several issues related to the interplay of enhanced surface charge 

as well as increased slip velocity at the flowing electrolyte - LFS interface would then be warranted. It has 
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been indicated, for instance, that an increased Vs would result due to the larger ion convection currents56. 

Additionally, viscous effects may be playing a major role57,58. As the coefficient in Eqn. (3.1), intimately 

connects the 𝜀𝑟, and the η, a decrease in the former may not be readily deconvoluted from an increase in 

the latter experimentally. In our numerical simulations, an increase in the η by a factor of ~ 2.5 over the 

equivalent length scale (from a bulk value of 0.89 cP to 2.19 cP) was necessary to obtain the experimentally 

observed streaming potentials, assuming that the 𝜀𝑟 is ~ 78.  

Our experiments have deep scientific implications underlying fluid flow interfacing with both air 

and liquid as well as fluid shear at a surface, and electrokinetic phenomena as related to the localized 

variation of the zeta potential and nonlinearity. We anticipate that our work would revitalize research related 

to the fabrication of alternate electrical voltage/power sources from liquid flow over charged surfaces. Other 

anticipated applications extend to electrophoretic applications in biological separations (cell transport, 

manipulation59, and interactions60), as well as voltage sources for lab-on-a-chip applications61. 

 

3.6 Conclusion 

In summary, our work has experimentally demonstrated the largest figure of merit thus far62–65 to 

the best of our knowledge, with primary focus on methodologies related  to enhance the streaming potential 

(Vs) per unit pressure difference (ΔP), through the use of liquid filled surfaces (also see Supplementary 

Note 6 for considerations related to overall electrokinetic efficiency). The use of the LFS yields a factor of 

1.4 larger figure of merit compared to that obtained through the use of the AFS. It has been shown that 

larger voltages, through a measured streaming potential, may be achieved through careful engineering of 

the coupled electric field and fluid flow. The application of the related increase in the electrokinetic energy 

conversion efficiency would need further optimization of the fluidic and electrical impedances, in concert 

with the streaming conductance, as matched to an appropriate load66. Concomitantly, unipolar transport 

(where for example, either Na+ or Cl- ions are transported67) through electrical double layer overlap46,68  in 



29 

 

nanoscale channels, may be coupled with LFS  to yield much larger voltages, comparable to that of 

batteries69. 
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3.8 Supplementary materials 

3.8.1 Geometrical parameters for the construction of air filled surfaces (AFS) and liquid filled 

surfaces (LFS):  

For the influence of surface geometry alone, we compare the results of Flat (unpatterned surface), 

and the air-filled surfaces (AFS): Air0.5 and Air0.75, as indicated in Figures 3.2(c) and (d). The air in the AFS 

can reduce the friction between the flowing liquid electrolyte and patterned surface which helps in the 

increase of the streaming potential (Vs). However, a non-charged liquid-air interface will have no 

contribution to streaming potential34,35. Consequently, the Vs of Air0.5 is only a little larger than compared 

to the Flat case and the Vs of Air0.75 is even smaller, presumably due to an increase of non-charged liquid-

air areas.        

The aspect of nano- and micro-scale roughness was considered and found to be of much less 

importance compared to the groove width. The nominal roughness of the parylene coated surface was found 

to be Ra = 1.25 nm ± 0.19 nm (as determined through Dektak 150 Surface Profilometer) and the obtained 
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streaming potential was insensitive to variations around such values. Generally, a roughness of < 6 nm has 

minimal effects on the slip length and flow rate70, and can be considered hydrodynamically smooth71. 

 

Supplementary Figure 1 The contact angle of (a) water, (b) GPL 104, and (c) castor oil on parylene coated 

flat Silicon surface were measured using Ramé-Hart Model 190 Contact Angle Goniometer. The measured 

results are 94.6°, 24.1°, 28.8° for water, GPL 104 and castor oil, respectively. It is then clear that parylene 

is hydrophobic (/oleophilic). (d) shows that the GPL 104 oil as well as the castor oil is immiscible with 

water. 

 

Supplementary Table 1 | Physical properties of filled fluids (data from DuPont® Performance 

Lubricants, 2015) 

Oils 
Density 

(g/cm3) 

Kinematic 

Viscosity 

(cm2/s) 

Dynamic 

Viscosity 

(mPa∙s) 

Dielectric 

Constant 

Surface 

Tension 

(mN/m) 

Krytox® 104 1.93 1.77 340 2.1 18 

Molivera 

Organics 

Castor Oil 

0.96 3.25 312 4.7 39 

 

3.8.2 The pressure dependence of 𝑽𝒔⁡and the numerical estimation of the surface potential (𝛇)  

In the chosen pressure range, that the Vs was linearly proportional to the applied P, following the 

Helmholtz-Smoluchowski relation: 𝑉𝑆 =⁡
𝜖𝜁

𝜂𝜅
∆𝑃, as shown in Figures 3.2(c), 3.3(b), and 3.3(c). From the 
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slope of the Vs - P curve, we estimate the surface potential (𝜁) at the edge of the shear plane, assuming an 

the electrolyte permittivity:  (=  r) with r as the relative permittivity, e.g., ~ 80 for 0.1 mM NaCl 

solution), : the dynamic viscosity of the electrolyte (~ 10-3 Pa∙s), and a bulk electrolyte conductivity ( ~ 

10-3  S/m), which are listed in Supplementary Table 2, below. 

Supplementary Table 2 | Linear fitting results and 𝛇 

Sample R2 Slope (mV/Pa) 𝛇⁡(mV) 

Flat  0.9972 0.03081 44.2 

Air0.5  0.9997 0.03117 46.1 

Air0.75   0.9963 0.0286 41.0 

            GPL0.5  0.9996 0.04392 65.6 

Castor0.5  0.9963 0.02418 34.7 

 

3.8.3 Estimates of the overall slip length (𝒃𝒆𝒇𝒇) from averaged surface potential (𝛇)  

The ζ values listed in Supplementary Table 2, may be considered an averaged/effective value(= 

𝜁𝑒𝑓𝑓) considering the top (PDMS) and bottom (the LFS, constituted from the parylene and the oil in the 

interstices) surfaces of the channel. Based on the effective medium approach (EMA)35, we consider a 

weighted summation of the 𝜁𝑃𝐷𝑀𝑆, 𝜁𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒, and 𝜁𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑐𝑒 as follows:  

𝜁𝑒𝑓𝑓 = 0.5𝜁𝑃𝐷𝑀𝑆 + 0.5𝜁𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒    (S3-1)  

𝜁𝑒𝑓𝑓 = 0.5𝜁𝑃𝐷𝑀𝑆 +
𝑏𝑒𝑓𝑓

𝜆𝐷
(0.25𝜁𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒 + 0.25𝜁𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑐𝑒)  (S3-2) 

The reported 𝜁𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒  is 17.5 mV at 10 mM NaCl solution72, consequently 𝜁𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒  was 

estimated to be ~ 35 mV for the 0.1 mM electrolyte used in our studies, based on the relation36 ζ~ log[ 𝐼]. 

The 𝜁𝑃𝐷𝑀𝑆 was estimated to be ~ 53.4 mV based on the first equation using 𝜁𝑒𝑓𝑓 = 44.2 mV for Flat. Such 

an estimate for the 𝜁𝑃𝐷𝑀𝑆 seems to be in reasonable accord with literature, considering that there may be 

many affecting factors36,73, e.g., counter-ion type, pH of the solution and temperature. The 𝜁𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑐𝑒 = 0 
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mV for air35. Then, the beff for Air0.5  can be estimated as 66.5 nm based on the second equation. Given that74 

the 𝜁𝑜𝑖𝑙⁡ is ~ 69 mV, the effective slip length beff for the GPL0.5  : would be ~ 44.9 nm. The beff can also be 

estimated for Air0.25   and Castor0.5   using the same method and all the results are listed in Supplementary 

Table 3. 

Supplementary Table 3 | Estimates of the effective slip length: beff 

Sample 𝒃𝒆𝒇𝒇(nm) 

Air0.5  66.5 

Air0.25  98.0 

GPL0.5  44.9 

Castor0.5   9.2 

 

The beff of Air0.75 is larger compared to that of Air0.5  and maybe related to the larger amount of air, 

in the former. The beff of GPL oil is smaller due to a larger viscosity, compared to air, while the beff of castor 

oil is even smaller due to a larger dielectric constant. 

While significant care was taken in removing the oil from the surface in the use of the LFS, there 

is a possibility that the oil may partially cover the parylene surface. Consequently, the effective medium 

approach (EMA) aspect may indeed be considered an approximation. Previously, we used 𝜙𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒 = 0.25 

and 𝜙𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑐𝑒 = 0.25 (assuming that parylene area was not covered by oil) and obtained an effective slip 

length (beff) of ~ 44.9 nm for GPL0.5. However, even with 𝜙𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒 = 0.1 and 𝜙𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑐𝑒 = 0.4 (assuming 

that 80% of the LFS was covered by oil), the beff is ~ 37.5 nm, a change of ~ 16%. Consequently, the use 

of the EMA seems to be a reasonable approximation.  

3.8.4 Pressure-driven electrokinetic flow with no hydrodynamic slip 

To describe electrolyte flow, we modeled through self-consistent finite element simulations 

(COMSOL®), the local fluid velocity at a point (u), the respective ionic species concentration (ci), and 
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electric potential (). The relevant mass conservation equations, and the Stokes equation were coupled with 

the Nernst-Planck-Poisson (N-P-P) models, as described below. 

Let i= 1, 2 represent the ionic species present in the electrolyte, e.g., i=1 refers to Na+, while i=2, 

refers to the Cl- species. The flux conservation equation75 of each ionic species, 𝑖, is 

     
𝜕𝑛𝑖

𝜕𝑡
= 𝛻 ⋅ 𝑱𝒊                    (S4-1) 

where 𝑱𝒊 is the ionic flux vector and 𝑛𝑖 is the number density of ions per unit volume. 𝑛𝑖 = 𝑐𝑖 ∗ 𝑁𝐴𝑣 where 

𝑐𝑖⁡is the concentration of each ionic species in moles/L (M) and 𝑁𝐴𝑣 is the Avogadro constant = 6.02 x1023 

/mole. For steady state flow: 𝛻 ⋅ 𝑱𝒊   = 0. 

The Nernst-Planck (N-P) equation32,39,76: Eqn. (S4-2) below, considers the motion of ions in a fluid 

as a function of fluxes due to convection, diffusion, as well as ion migration under the effects of electrostatic 

forces.  

                     𝑱𝒊 ⁡= 𝑛𝑖𝒖 − 𝐷𝑖𝛻𝑛𝑖 −
𝑧𝑖𝑒⁡𝑛𝑖𝐷𝑖

𝑘𝐵𝑇
𝛻⁡𝜙⁡                                   (S4-2) 

𝐷𝑖 is the respective species diffusivity, i.e.,  𝐷𝑁𝑎+  =  1.13 x 10-9 m2 /s and 𝐷𝐶𝑙− = 1.0 x 10-9 m2 /s. 𝑧𝑖 is the 

valence of each ionic species. 𝑧𝑁𝑎+ = 1  and 𝑧𝐶𝑙− = −1, 𝑘𝐵⁡is the Boltzmann constant = 1.38 x 10-23 J/K 

and T = 298 K. The u is obtained through the Stokes’ equation40: Eqn. (S4-3),  

−𝛻𝑝 + 𝜇𝛻2𝒖 + 𝜌𝑓𝛻⁡𝜙⁡ = 0                     (S4-3) 

Here, pressure gradient driving the flow (𝛻𝑝), the viscous force (𝜇𝛻2𝑢, with 𝜇 as the dynamic viscosity) 

and the electrical body force (=𝜌𝑓𝛻⁡𝜙), with 𝜌𝑓 as the volumetric space charge density in the electrolyte 

due to the presence of free charges, e.g., counter-ions near the surface, are all considered. The electric 

potential () is obtained from the Poisson (P) equation77: 

                                                                    𝛻 ⋅ (𝜖0𝜖𝑟𝛻𝜙) = 𝜌𝑓                                                            (S4-4) 
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 𝜖0 is = 8.854⋅10-12 C2/Nm2- the permittivity of free space and 𝜖𝑟is the relative permittivity of the species 

near the wall. The  from Eqn. (S4-4) and the 𝑛𝑖 from Eqn. (S4-2) are coupled through: 

𝜌𝑓 = ∑ 𝑧𝑖𝑒⁡𝑛𝑖
2
𝑖=1                                                              (S4-5) 

Eqns. (S4-2), (S4-3), (S4-4), and (S4-5) are solved self-consistently, and used to obtain (i) u, and (ii)  and 

related  𝑛𝑖, at any point (x,y) in the channel. Here, x is along the direction of fluid flow along the length of 

the channel, and y is the vertical coordinate – along the height of the channel. The u yields the local velocity, 

and is averaged along the width of the channel for the average velocity.  The Vs,j  developed between any 

two points (xj, yj) and (xj+1, yj) along the channel is then computed from | (xj, yj) -  (xj+1, yj)|.  The net Vs 

was aggregated from such individual contributions along the length of the channel. The mesh size, for the 

finite element simulations, was chosen to be 5 nm at both the top and bottom walls outwards. 

Boundary Conditions: For the N-P equation (Eqn. S4-2), the bulk concentration 𝒄𝒐(= ⁡ 𝒄𝑵𝒂+ =

⁡𝒄𝑪𝒍−) = 0.1 mM, was kept constant for both the electrolyte ion species at both inlet and outlet, as well as at 

the centerline of the channel, assumed to be far outside the electrical double layer (EDL), as the Debye 

length (𝝀𝑫 =⁡√
𝝐𝒐𝝐𝒓𝒌𝑩𝑻

𝒆𝟐𝒄𝒊
) was estimated to be ~ 30 nm. The difference of ionic concentration between 

counter-ions and co-ions, yields a net charge profile density along the height of the channel. The flux normal 

to top and bottom walls 𝑱𝒊 = 𝟎.  

For the Poisson equation (Eqn. S4-4), the surface charge density (𝜎) at the top wall49: 𝜎𝑃𝐷𝑀𝑆 = -18 

mC/m2, while at the bottom surface, (i) at the oil74-electrolyte interface is 𝜎𝑜𝑖𝑙= -1.8 mC/m2, and (ii) for the 

parylene51-electrolyte interface is 𝜎𝑃𝑎𝑟𝑦𝑙𝑒𝑛𝑒 = - 3.7 mC/m2. The 𝜎 values are related to the surface electrical 

field. The outlet was set at zero potential (/ground). It was assumed that the electric field due to EDL and 

that due to generated streaming potential were completely decoupled. The 𝜙 at the center-line of flow, in 

the middle of the channel, i.e., 𝜙⁡(𝑦 = 𝐻/2) = 0 and far away from the EDL at the surface was set to zero. 
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For the Stokes equation (Eqn. S4-3), the inlet pressure was set to 1200 Pa, while the outlet was set 

to zero. The no-slip hydrodynamic boundary condition was assumed to hold true at all interfaces. 

3.8.5 Hydrodynamic flow with no surface charge but slip at the oil-electrolyte interface 

Here, the Stokes Equation (without any electrical body force) is the governing equation 

 −𝛻𝑝 + 𝜇𝛻2𝑢 = 0           (S5-1) 

The inlet pressure was set to 1200 Pa, while the outlet was set to zero. A Navier slip boundary condition: 

us (y=0) = 𝑏
𝜕𝑢⁡(𝑦=0)

𝜕𝑦
 over the flowing electrolyte-oil interface was assumed, with a finite slip velocity: us 

and slip length: b). For a hydrophobic surface the b may be approximated29,78 to be at least d, i.e., ~ 18 m.   

3.8.6 Considerations related to the figure of merit (in mV/Pa) and energy conversion efficiency 

Our focus, in the presented work, was less on the energy conversion efficiency and more on 

methodologies to enhance the streaming potential (Vs) per unit pressure difference (P), i.e., (
𝑉𝑠

∆𝑃
). Indeed, 

our work has experimentally demonstrated the largest figure of merit, thus far, in terms of the voltage 

generated per unit applied pressure, in comparison to previous experimental work79–82. 

More specifically, the fluid flow to electrical conversion efficiency (Eff.) = Pout /Pin, where the 

output power: Pout (= 
1

4
Vs∙ Is), Is (= 𝑉𝑠

𝐴𝜎

𝐿
) is the streaming current, with A (= w∙h) as the cross-sectional area 

of the channel of width: w, and height: h, and Pin = Q ∙ ∆P, Q is the flow rate (=
𝐺ℎ3

12𝜂
 ), with G as a constant 

pressure gradient, and  the viscosity.  

Then, the Eff.=⁡
3𝑉𝑠

2𝜎𝜂𝑤

∆𝑃𝐿𝐺ℎ3
= 3(

𝑉𝑠

∆𝑃
) (

𝑉𝑠

𝐿
) (

𝜂𝜎

𝐺
) (

𝑤

ℎ2
). For a given electrolyte concentration (fixed ) 

and flow velocity (a given u), both (
𝑉𝑠

∆𝑃
) and (

𝑤

ℎ2
)are important. While the former, i.e., (

𝑉𝑠

∆𝑃
) was considered 

in detail in our work, the geometrical factor: (
𝑤

ℎ2
) may be significantly enhanced through the use of 

nanoscale diameter channels (small h) with the overlap of double layers, as seen for example, in the work 

by van der Heyden, et al, Nanoletters, vol. 6, p. 2232, (2006). We used channels of the order of 250 m in 
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height over which most of the electric field is zero and a finite field is obtained only close to the channel 

surfaces of the order of 0.1 m (the Debye length). Consequently, the estimated energy conversion 

efficiencies in our work is quite small of the order 10-3 %, employing the computational methodology 

indicated in van der Heyden, et al, Nanoletters, vol. 6, p. 2232, (2006). More specifically, the efficiency 

values are ~ 7.7∙10-4 % (through the use of the oil in a LFS), ~ 3.8∙10-4 % (on an AFS), and ~ 3.5∙10-4 % (on 

a flat unpatterned substrate).  

An important point to note is that the energy conversion efficiency may be improved by more than 

a factor of two through the use of LFS compared to the flat/AFS substrates. We may expect that the 

efficiency of nanochannels may be further enhanced by using LFS, and will be one of the focus areas of 

future work. 
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Chapter 4 Modulation of streaming potential and slip characteristics in 

electrolyte flow over liquid-filled surface 

 

4.1 Abstract 

A significant enhancement in the streaming potential (Vs) was obtained in experiments considering 

the flow of electrolyte over liquid filled surfaces (LFS), where the grooves in patterned substrates are filled 

with electrolyte immiscible oils. Such LFS yield larger Vs (by a factor of 1.5) compared to superhydrophobic 

surfaces, with air-filled groves, and offer tunability of electrokinetic flow. It is shown that the density and 

viscosity, surface tension as well as the dielectric constant of the filling oil, in the LFS, determines Vs. 

Relating a hydrodynamic slip length to the obtained Vs offers insight into flow characteristics, as modulated 

by the liquid interfaces in the LFS.  

 

4.2 Introduction 

Electrokinetic flows, considering the movement of electrolyte relative to another charged surface, 

are important for understanding the effects of charge accumulation and dispersion, with applications 

ranging from power generation83–85 to biochemical separations31,86. For instance, in pressure driven flows, 

the flow of excess ions in the electrical double layer (EDL) near the surface, would generate a streaming 

current, and in the absence of such current – an ion accumulation related streaming potential (Vs). The 

exploration of the use of this phenomenon for energy sources has a long history87,88, and has also received 

much attention recently, from a micro- and nano-fluidics pesrpective46,83,89. For example, the overlap of the 

EDLs in nanoscale channels could lead to unipolar flows mimicking battery-like behavior. However, 

considering that flow and throughput restrictions are a major constraint at the nanoscale90, we focus our 

work as presented here on engineered microscale channels for obtaining high Vs.  
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Fluid flows over smooth surfaces with concomlitant no-slip conditions, yield low streaming 

currents and potential. It has then been indicated that enhanced electroosmotic mobility: M,  may be 

obtained through the use of patterned91,92 or superhydrophobic (SH) surfaces5, in both laminar and turbulent 

flows. The basis is that the aiding of the counter-ion motion near the surface would enhance the 

electroosmotic current and the related Vs. From the Helmholtz-Smoluchowski relation32, M= 
𝜀𝜁

𝜂
, where 𝜀⁡(=

𝜀𝑜𝜀𝑟 , with 𝜀𝑜=8.854∙10-12 C2/Nm2 is the vacuum permittivity and 𝜀𝑟 is the relative permittivity) is the 

dielectric constant of the electrolyte, 𝜁  is the zeta potential, and 𝜂  is the viscosity. However, such an 

increased mobility is based on the requirement that the no-shear/slipping surfaces have a significant charge 

density, and of a similar magnitude and sign as that of the no-slip surface in fluidic channels.  

 

Figure 4.1 Large (a) slip velocities (us), as well as (b) electrokinetic streaming potentials (Vs = V1 – V2) may 

be generated through Poiseuille type electrolyte flow (under a pressure difference ΔP = P1 - P2) over a liquid 

filled surface (LFS), with interstices/grooves filled with liquids of varying physical parameters, such as the 

density, dielectric constant, viscosity, etc.  The positive and negative charges are indicated by the red and 

the blue circles. A larger Vs may be generated due to a larger 𝜁 (the zeta potential). 

 

Traditionally, SH surfaces were fabricated through the use of air to promote slip, e.g., in 

patterned29,93 or non-smooth surfaces7,9,10, with a flat air-electrolyte interface. Through much insight, it was 

determined that only a charged liquid-air interface could enhance the streaming potential94–96. It was found, 

for instance, that the Vs for flow over uncharged liquid-air interface was similar to that of the 

homogeneously charged smooth surface for low EDL thicknesses and 𝜁 94,95, and may be smaller compared 

to that obtained from a smooth surface with high zeta 𝜁 96. There is also considerable ambiguity on the 
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electrical character of the air-electrolyte interface, as to whether there is a charge at all to yielding an 

electrical potential due to residual OH- ions.  

We circumvent such ambiguity in our work using liquid (of an appropriate 𝜀𝑟 ) filled into the 

interstices of patterned surfaces, fabricated to mimic SH character. Consequently, a definitive charge 

density would be ensured at the flowing electrolyte slipping surface97, promoting the conditions for 

obtaining large streaming potentials: Fig. 4.1. The shear plane is generally understood as the location at 

which the fluid starts to move and would be expected to be located at the liquid-liquid interface and the 

solid-liquid interface. Fig. 4.1(a) emphasizes the flow profile (incorporating the slip velocity: us, as well as 

the associated slip length: b) over a liquid filled surface (LFS) 98, while Fig. 4.1(b) depicts the associated 

electrokinetic flows over the LFS. In this study, we investigate the characteristics of the LFS, which may 

be used for enhancing the magnitude of the associated Vs. We also show that the use of such surfaces enables 

a simultaneous decrease of the fluid drag99–102, and increased flow103,104  coupled with an increase in the Vs.  

 

4.3 Experiment section 

Fabrication and characterization of hybrid surfaces: the AFS and the LFS. A reference air 

filled surface (AFS) – consisting of rectangular ridges and troughs, was fabricated through photolithography 

processes and is shown in Fig. 4.2(a). Briefly, a Si wafer (n-type, <110>, thickness 500µm, from University 

Wafer) was cleaned with acetone, IPA, and rinsed by DI water, then baked at 180° C for 5 minutes. Negative 

photoresist NR9-3000 was coated on Si wafer at 3000 rpm for 40 s and then baked at 120° C for 60 s. The 

specific pattern was defined through a mask aligner (EVG 620) and developed (using RD6) for 1 minute. 

Subsequently, the resist patterned wafer was subject to dry etching (using Oxford Plasmalab 100 RIE/ICP) 

to yield a trench depth (h) ~ 95µm. The etched Si wafer was then put in RR2 photoresist remover over ~ 

12 hours and any resist residues further removed (using PVA TePla PS100 at 120 sccm, 200 W for 90 s).  
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Finally, the grooved surface was coated with Parylene-C (using PDS 2010 Parylene Coater) to a thickness 

of ~ 600 nm. The basis AFS was defined through an air fraction, 
wd

d
a

+
=  - the ratio of the trough width 

(d) over one period length (d + w). The surfaces were imaged using environmental scanning electron 

microscopy (ESEM): FEI/Phillips XL ESEM and the FEI Quanta FEG 250 ESEM, respectively: Fig. 4.2(b): 

AFS, and Fig. 4.2(c): LFS.  

 

Figure 4.2 A liquid filled surface (LFS) was fabricated through (a) lithographic procedures to synthesize a 

surface with ridges and grooves, and subsequent deposition of a uniform parylene film. The grooves are 

filled with a liquid (immiscible with the electrolyte and with low surface tension) and subsequently the LFS 

is planarized. (b) The surface, as indicated through a scanning electron microscope (SEM) image is defined 

through the width of the trough (d) and ridge (w), as well as the height (h). (c) An image of a practical LFS, 

indicating grooves filled with oil. 

 

Due to the oleophilicity of the AFS105, oils immiscible with water and with low surface tension, e.g., 

Dupont Krytox GPL 104 (General Purpose Lubricant) - a fluorinated synthetic oil, castor oil, and synthetic 

motor oils (0W-20 and 20W-50), can be filled into the troughs of the patterned surface to yield a LFS, 

located at the bottom of the micro-fluidic channel. The physical parameters for the oils used in the LFS are 
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listed in Table I. The oil was spread evenly on the surface via soft brush and any excess oil was removed 

from the top of the LFS. Detailed microscopic examination, e.g., Fig. 4.2(c), did not indicate any entrapped 

bubbles in the grooves. The oil filling was found to be reliable and is stable for the LFS, e.g., compared to 

the AFS. For instance, the surface energy of the LFS: ELFS ~ 0.5 × pary + 0.5 × oil ~ 32 mJ/m2 is an order 

of magnitude smaller compared to that of the AFS: EAFS ~ r × pary ~ 290 mJ/m2 with r as the roughness 

factor (= 6.3, from the ratio of the total area to the projected area105). The excellent liquid-interface stability 

was also considered previously considering surface-immobilized lubricants106.  

Table 4.1 The parameters of the oils (the density: ρ, kinematic viscosity: η, dynamic viscosity: μ, dielectric 

constant: ε and the surface tension: γ, of the liquids filling the interstices of the liquid filled surfaces (LFS). 

Oils ρ (g/cm3)  η (cm2/s) μ (mPa∙s) ε γ (mJ/m2) 

Krytox® 104 1.93 1.77 340 2.1 18 

Castor Oil 0.96 3.25 312 4.7 39 

Motor Oil  

0W-20 

0.86 1.19 102 2.4 30 

Motor Oil 

 20W-50 

0.86 5.76 495 2.4 30 

 

Setup for measurement of the streaming potential (Vs). The experimental setup is shown in Fig. 

4.3(a) with a schematic: Fig. 4.3(b). A microchannel (11.8 cm in length, 9 mm in width, and 255 μm in 

height), was constituted from a top surface (constituted from a polycarbonate coated with silicone), and a 

bottom AFS or LFS. These two surfaces are separated by a silicone rubber spacer for sealing and adjusting 

the height of the channel. For the streaming potential (Vs) measurement, electrolyte, i.e., salt water (in the 

concentration range of 0.1 mM – 10 mM), preparing by dissolving NaCl into DI water, was pumped by a 

syringe pump through a tube into the microchannel at a constant flow rate, and provides a pressure gradient. 

The pressure drop for the experiment was in the range of 200 Pa to 1200 Pa, with lower and higher pressures 
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yielding unreliable values for the Vs. The voltages – related to the Vs, were measured (using a Keithley 2700 

Multimeter with input resistance >10 GΩ) through Ag/AgCl electrodes inserted into the two end reservoirs 

located at the inlet and outlet of the channel. The Vs for each applied pressure was measured six times. 

Given that the channel length (L) and width (W) are much larger than channel height (h), Poiseuille flow is 

assumed. The Vs was measured in flow at different orientations with respect to the patterned substrate to 

consider various tensorial aspects95,107.  

 

Figure 4.3. The apparatus used for the measurement of the streaming potential, (a) consisting of a syringe 

pump connected by a tube to the microchannel to provide a constant flow rate to the electrolyte and a 

pressure gradient, and a (b) schematic of the placement of the electrodes (non-polarizable Ag/AgCl type) 

at the ends to measure the streaming potential (Vs) related voltage (e.g., the), along the microchannel. 

 

Measurement of the Pressure. The electrolyte flow rate in the channel, constituted from 

rectangular plate geometry46, was modulated through a syringe pump: Fig. 4.3(a), and was transduced to an 

applied pressure (∆P)  based on the Poiseuille relation: ∆𝑃 =
12𝜂𝐿𝑄

ℎ3
 (𝑄 is flow rate, L is the channel length 

of ~ 11.8 cm, and h the channel height of ~ 250 μm). The ∆P over the channel length (where the other end 

was left open to atmosphere) motivated the pressure gradient driven flow. For the experiment, the flow 

rates were chosen as 0.0275 mL/s (corresponding to 200 Pa), 0.055 mL/s (440 Pa), 0.0825 mL/s (670 Pa), 

0.11 mL/s (900 Pa) and 0.1375 mL/s (1130 Pa). Additionally, the calculated pressure drop was checked 

using a manometer (UEI EM152) by inserting the measurement ports into the two reservoirs of the channel 

and corresponded very closely to the values estimated from the Poiseuille relation.  
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Figure 4.4 The contact angles measured on a (a) water-parylene, and (b) water - GPL 104 interface at 

~94.6° and ~ 68.9°, respectively. These values were used for estimating the corresponding 𝛾𝑆𝐿 from given 

𝛾𝑆𝐴 (= 46 mJ/m2 for parylene) and 𝛾𝐿𝐴 (= 72 mJ/m2). 

 

Table 4.2 The measured contact angles for oils and parylene and calculated interface energy γSL. 

Substrate Contact angle  γSL (mJ/m2) 

Krytox® 104 68.86° -7.97 

Castor Oil 74.39° 19.63 

Motor Oil  

0W-20 

82.93° 21.14 

Motor Oil  

20W-50 

81.01° 18.75 

Parylene-C 94.6° 51 

 

Measurement of the contact angle. The electrolyte-oil interfacial energy will influence the 

interface shape and adhesion force, and modifies the interface flow profile and the Vs. From the Young 

relation: 

                                             𝛾𝑆𝐴 − 𝛾𝑆𝐿 − 𝛾𝐿𝐴𝑐𝑜𝑠𝜃 = 0                                                                 (4.1) 
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with 𝛾𝑆𝐴, 𝛾𝑆𝐿, 𝛾𝐿𝐴 as the substrate-air, substrate-liquid and liquid-air surface energy, respectively, 𝜃 is the 

substrate-liquid contact angle. The contact angles of electrolyte (0.1mM NaCl solution) with parylene and 

Si substrate with different oil films were measured using Ramé-Hart Model 190 Contact Angle Goniometer 

at 20℃, for estimating the corresponding 𝛾𝑆𝐿 from given 𝛾𝑆𝐴 and 𝛾𝐿𝐴: Fig. 4.4. The estimated 𝛾𝑆𝐿 values 

for the various oils are listed in Table 4.2 (with 𝛾𝑆𝐴 = 46 mJ/m2 for parylene and 𝛾𝐿𝐴 = 72 mJ/m2).  

 

4.4 Results and discussion 

Pressure induced flow on the LFS, and related measurement of the streaming potential. We 

report measurements of the Vs with 0.1 mM electrolyte concentration, where maximal values of the 

streaming potential were determined: Fig. 4.5. Here, the observed variation arises from the Helmholtz – 

Smoluchowski relation: 𝑉𝑠 =
𝜀𝜁

𝜂𝜅𝑏
∆𝑃, in terms of the electrolyte dielectric constant (ε), the surface zeta 

potential (𝜁), electrolyte viscosity (η) bulk electrolyte conductivity (𝜅𝑏) and pressure drop in the channel 

(∆P). Assuming relatively constant ε and η for the electrolyte, the 𝜅𝑏 is proportional to concentration (I) 2,36, 

while the 𝜁 ≈ 𝑐1 ∗ log[𝐼] + c2 – where c1 and c2 are constants. The overall effect36 is that the Vs decreases 

with the I. 
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Figure 4.5 Variation of the streaming potential (Vs) for air filled surface (AFS), and the GPL oil filled LFS 

and castor oil filled LFS at different flowing electrolyte concentrations: I, (0.1 mM, 1 mM and 10 mM) at 

1200 Pa at transverse direction. The Vs is fit to a relation of the form ~ log⁡[𝐼]/[𝐼] with 𝑅2 = 0.993 for GPL 

oil filled LFS, 𝑅2 = 1 for castor oil filled LFS, and 𝑅2 = 1, for the AFS. 

 

A typical response of the measured voltage as a function of flow is indicated in Fig. 4.6(a). The 

voltage increases when the electrolyte was driven through the channel and subsequently attains a steady 

value Vf. The difference between Vf and the initial voltage: V0 (in the absence of flow) was defined to be 

the measured streaming potential: Vs. The variation of the Vs with applied pressure is shown in Fig. 4.6(b) 

for both the AFS and LFS (with four different filling liquids) at transverse direction. Generally, a linear 

variation between the Vs and the ∆P, following the Helmholtz-Smoluchowski relation32is observed.  
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Figure 4.6 (a) A typical measured voltage response indicating the voltage increase under the action of an 

applied pressure of 1200 Pa causing the flow of 0.1 mM NaCl solution. The periodic action of the syringe 

pump is responsible for the increase (flow) and decrease (no flow/Flow Pause) of the measured voltage. 

The corresponding velocity is indicated on the right-hand side. (b) A linear variation of the streaming 

potential (Vs) as a function of the applied pressure (ΔP), for various filling liquids/oils, in the LFS. The GPL 

is a fluorinated synthetic oil while the 0W-20 and 20W-50 are synthetic motor oils. It is to be noted that a 

larger Vs is obtained using GPL and other oils compared to air in the interstices, i.e., an air-filled surface 

(AFS). 

 

Possible influence of oils on the measured Vs. The selected oils, which serve as lubricants in the 

LFS, vary in terms of the dielectric constant (ε), dynamic viscosity (η), electrical conductivity (κ), surface 

tension (γ) and density (ρ) – with the individual properties as listed in Table 4.1. As the Vs may be related 

to the electrolyte-oil interface shape and influenced by many of such parameters, we first aim to obtain 

empirical relationships of such an influence through the Buckingham Π theorem110. While the given LFS 

system is quite complex, as related to the large number of parameters and the multi-physics aspects, the 

motivation was to make sense of the results through dimensional analysis. Consequently, at given flowing 

liquid, groove fraction and groove orientation, one may obtain related non-dimensionalized groups, i.e.,  

                                                               Π0 =
𝑉𝑠

𝜂−0.5𝜅−0.5𝛾
                                                                     (4.2a) 

or 

                                                               Π1 =
𝜌

𝜀−1𝜂3𝜅𝛾−2
                                                                      (4.2b) 
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may be obtained. From fitting the above, with Vs from experiment and the values of oil properties, an 

empirical relationship Π0 = F(Π1) and fit (R^2 ~ 0.82) was obtained: Fig. 4.7. A larger (/smaller) ϕoil may be 

expected to increase (/decrease) the polarizability and increase (/decrease) friction at the oil-water interface1 

and yield a decreased (/enhanced) Vs. A possible correspondence between the η and the εr was indicated 

earlier111. 

For a better understanding of the obtained Vs variation, we considered the flow profile variation for 

an LFS taking into account both the electrical attributes, such as ε, κ, as well as the nominal fluidic 

parameters, such as the ρ, η, and γ, of both the impregnated liquid in the LFS as well as at the electrolyte – 

LFS interfaces.  

 

Figure 4.7. Experimentally derived correlations between the obtained streaming potential (Vs) on LFS as a 

function of non-dimensional parameters, through considering the viscosity (η), electrical conductivity (κ), 

surface tension (γ), the density (ρ) and the dielectric constant (ε) of the filling liquid.  

 

The influence on slip, as a function of electrical parameters of the filling liquid, in LFS. One 

manifestation of a liquid impregnated surface, akin to the LFS discussed in this work, was a slippery liquid 

infused porous surface27. There, the wettability in terms of enhancing the liquid slip was considered. The 
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slip length (b), as determined through the slip velocity (𝑢𝑠) and the surface shear rate (
𝜕𝑢

𝜕𝑦
|𝑦=0) from Navier 

boundary condition: 𝑢𝑠 = 𝑏
𝜕𝑢

𝜕𝑦
|𝑦=0, would be dependent on the filling liquid properties99,104. Considering 

electrical characteristics, we indicate the inverse relation of the Vs to the dielectric constant of oil: εoil. For 

a hybrid surface, such as the LFS, consisting of both solid parylene and liquid oil, an effective slip length 

beff may be defined.  

Using the relations in Belyaev & Vinogradova112 and Nizkaya113  et al, we calculated the slip length 

of the LFS with transverse grooves where we consider the groove orientation, groove fraction and viscosity 

ratio. The local slip length for transverse groove, considering the viscosity of the electrolyte (𝜂𝑒𝑙𝑒𝑐𝑡) and 

the oil (𝜂𝑜𝑖𝑙) and a geometry-dependent function: 𝛽, was estimated through113:     

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑏 = 𝑤
𝜂𝑒𝑙𝑒𝑐𝑡

𝜂𝑜𝑖𝑙
𝛽            (4.3) 

For deep grooves, as in our case (with a height: h of ~ 95 μm, and a width: w of 18 μm, i.e., with 

ℎ/𝑤 ≥ 1), 𝛽 ≈ 0.12. The effective slip length (beff) was then estimated to be: 

𝑏𝑒𝑓𝑓 =
𝐿

2𝜋

ln⁡[sec(
𝜋𝜙

2
)]

1+
𝐿

2𝜋𝑏
𝑙
𝑦ln⁡[sec(

𝜋𝜙

2
)+tan(

𝜋𝜙

2
)]

       (4.4) 

The calculated beff (/b) for GPL oil and castor oil filled LFS are then ~ 2.5 nm (/6.4 nm) and ~ 2.7 

nm (/6.9 nm), respectively. The beff /b ratio is then ~ 0.4, corresponding closely114 to the expected value of 

~ 0.5 (the area fraction), when 𝑏/𝐿 ≪ 1, 𝑏𝑒𝑓𝑓
⊥,∥ ≃ 𝜙𝑏.   If we consider the charge effects at the gas/oil sectors 

on flow transport114, then the electroosmotic mobility for transversely oriented groove was shown to be: 

                 𝑀⊥ =
𝜀𝜁

𝜂
[1 +

𝑏𝑒𝑓𝑓

𝑏
(
𝑞2

𝑞1
(1 + 𝑘𝑏) − 1)]          (4.5) 

From literature, the surface charge density is ~ -3.6 mC/m2 (= q1) for parylene51 and ~ -1.8 mC/m2 

(=q2) for oil74. Through Vs measurements on flow of 0.1 mM NaCl solution (with k ~ (1/30) nm-1 = 1/𝜆𝐷, 

where 𝜆𝐷 is the Debye length) on parylene and PDMS coated flat substrates, and 𝑉𝑠 =
𝜀𝜁

𝜂𝜎
∆𝑃, we estimated 
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that 𝜁𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒~31.7⁡𝑚𝑉 and 𝜁𝑃𝐷𝑀𝑆~26.9⁡𝑚𝑉 .Then, the enhanced zeta potential for bottom surface 

𝜁𝑏𝑜𝑡𝑡𝑜𝑚,𝑒𝑛, considering the correspondence114,115 of the electroosmotic mobility to  the Vs is: 

𝜁𝑏𝑜𝑡𝑡𝑜𝑚,𝑒𝑛 = 𝜁𝑏𝑜𝑡𝑡𝑜𝑚[1 +
𝑏𝑒𝑓𝑓

𝑏
(
𝑞2

𝑞1
(1 + 𝑘𝑏) − 1)]         (4.6) 

and the concomitant 𝜁 for the channel is: 

         𝜁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 0.5𝜁𝑃𝐷𝑀𝑆 + 0.25(𝜁𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒 + 𝜁𝑜𝑖𝑙) [1 +
𝑏𝑒𝑓𝑓

𝑏
(

𝑞𝑜𝑖𝑙

𝑞𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒
(1 + 𝑘𝑏) − 1)]                     (4.7) 

Here, the effective zeta potential of the rectangular channel was defined through 𝜁𝑒𝑓𝑓(=

1

2
𝜁𝑏𝑜𝑡𝑡𝑜𝑚 +

1

2
𝜁𝑡𝑜𝑝), and for the 𝜁𝑏𝑜𝑡𝑡𝑜𝑚, a weighted summation94 of 𝜁𝑝𝑎𝑟𝑦𝑙𝑒𝑛𝑒 and 𝜁𝑜𝑖𝑙 was assumed. We 

then estimate that 𝜁𝐺𝑃𝐿 ~ 214 mV and 𝜁𝑐𝑎𝑠𝑡𝑜𝑟 ~ 66 mV from the above relation. The larger Vs obtained with 

the use of GPL oil in the LFS compared with that of the use of castor oil could be tentatively ascribed to 

the larger 𝜁𝐺𝑃𝐿.  

It may also be necessary to consider the issue of fixed charges and mobile charges on the slipping 

interfaces109. In Maduar109, et al, a parameter μ was used to modify the Navier slip boundary conditions, 

with μ =0 for fully mobile charges and with μ = 1, for fixed charges. If there is adsorption of hydroxyl ions, 

for example, the liquid-oil interface would be charged, and correspondent Vs is modified to:  

𝑉𝑠 =
𝜀𝜁

𝜂𝜎
(1 + 𝜇𝑏𝑒𝑓𝑓𝑘)∆𝑃                                                        (4.8)  

Consequently, another reason for the difference in the Vs between GPL- and castor oil- filled LFS 

may be due to differing 𝜇, and that 𝜇𝐺𝑃𝐿 > 𝜇𝑐𝑎𝑠𝑡𝑜𝑟 - due to the smaller dielectric constant of GPL oil (𝜀~ 

2.1) compared to castor oil (𝜀~ 4.7). Considering the continuity of tangential shear stress across the 

electrolyte (with η of ~ 1 mPa∙s) - oil (with η of ~ 300 mPa∙s) interface, it was assumed that the slip is along 

the oil-electrolyte interface.  
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An alternate understanding of the influence of charges, may be manifested through a charge density 

(σ) difference: |σparylene - σoil|, which is expected to yield a longitudinal electric field (Ex) as well as a 

transverse electric field (Ey), the former of which drives ion motion across the surface: Fig. 4.8. Here, where 

x is in the direction of fluid flow and the and y is the orthogonal direction- transverse to the direction of the 

pressure driven flow. It may be expected that with a large (/small) σoil, that the screening of the charge into 

the flowing electrolyte occurs over a smaller (/larger) distance yielding a larger (/smaller) ρs and 𝜁. The 

shear plane is then closer (/further), implying smaller (/larger) us and b. We estimated, for the parylene 

coated Si surface: σparylene at - 3.6 mC/m2 and that of the oil: σOil at – 1.8 mC/m2. The resultant Ey would be 

of the form: Ey, parylene ~ σparylene /εelec and Ey, oil ~ σoil /εelec, respectively. If we assume no residual charge at 

the oil-electrolyte (elec) interface, then from the continuity of electrical displacement and electrical fields, 

across the interface: (i) εoil Ey, oil=εelec Ey, elec, and (ii) Ex, oil=Ex, elec. Here, the capillary number (Ca) = ηv/γ, 

with η the dynamic viscosity, v as the characteristic velocity, and the surface tension (γ), was estimated to 

be of the order of 10-3, which indicates that the surface tension dominates over the viscous forces. A similar 

inference could be made through estimating the Bond number (Bo) – which relates the difference of the 

density of the two phases (electrolyte and oil) over a characteristic length, say, the groove width, with 

respect to the surface tension. Consequently, the pressure driven flow induced viscous force will not 

significantly deform the liquid-liquid interface116.   
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Figure 4.8 The schematic of electrokinetic flow over LFS surface with varying surface charge density (σ). 

As σoil is less than σparylene, the surface conductivity κs is smaller for the oil regions. Consequently, driven 

surface currents: J (both parallel: in the x-direction, and perpendicular: in the y-direction, to the LFS) serve 

to enhance the slip and the slip length (b). The b was correlated to the healing length LH ~ κs/κb (the ratio of 

the surface to the bulk electrical conductivities), the Debye length (λD), ηelec, as well as the εoil and σoil, 

through analysis and experiment. 

 

The deployment of a hybrid bottom surface, constituted from both the liquid and the solid with the 

concomitant differing surface charge densities may be expected to yield concentration polarization44 as well 

as non-uniform conduction117 effects over the surface. In electroosmotic flows, the ions contributing to the 

surface current (Jx ~ κs Ex, with κs being the surface conductivity) in the direction of the flow are replenished 

through an ion current from the bulk liquid (of conductivity: κb) over a length scale (termed a healing length: 

LH) and due to a normal component of the electric field (Ey). From such ion conservation considerations: κs 

Ex ~ κb Ey LH. If Ex and Ey are of comparable magnitudes, then the LH is of the order of κs/κb.  

For flow over the LFS, it may be expected that the Ex or the Ey may contribute to us and the resultant 

surface current: Js,x ~ ρs us, where ρs is the mobile surface charge density. From analogy to the arguments 

presented above, for  Ey induced current dominated case,  κb Ey LH ~ ρs us, implying, for a given shear rate 

(𝜕𝑢/𝜕𝑦) in the absence of nonlinear effects6:  

          𝑏⁡~⁡
𝜅𝑏𝜎𝑜𝑖𝑙𝐿𝐻

𝜀𝑒𝑙𝑒𝑐𝜌𝑠
                                 (4.9a) 
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However, this relation can not explain the experiment results that the slip length is larger for filled 

oil with smaller dielectric constant. Alternately, if the longitudinal electrical fields, say Ex, elec (=Ex, oil) are 

more responsible for the fluid slip, then κs Ex, elec ~ ρs us, indicating: 

       𝑏⁡~⁡
𝜅𝑠𝜎𝑜𝑖𝑙

𝜀𝑜𝑖𝑙𝜌𝑠
        (4.9b) 

Here, a larger b or a us also seems to be facilitated through a higher σoil. Additional electrostatic 

considerations, e.g., related to the screening in the electrolyte, must also be considered. It was previously 

indicated, for instance74, that the magnitude of the associated surface charge density may be independent 

of oil type, and mostly dependent on the aqueous phase/electrolyte. Indeed, testing with several oils 

indicates that the correlations indicated in Eqns. (4.2a) and (4.2b), are valid. As we use non-polar oils in 

the LFS, the molar conductivity is negligible and the Walden rule relating η to the σ is not applicable118.  

At the shear plane, from considering an equivalence of the shear stress: ⁡𝜏⁡(~⁡𝜂⁡𝜕𝑢/𝜕𝑦) to us, a 

direct correlation between the b and the η of the electrolyte may be deduced. Indeed, such a correlation and 

scaling has been previously indicated for liquid slip on air119, through a “gas cushion” model29. From the 

previously deduced b ~1/𝜀𝑜𝑖𝑙, we now obtain a significant correlation for the oil-electrolyte interface, that:  

𝑏⁡~⁡
𝜂𝑒𝑙𝑒𝑐

𝜀𝑜𝑖𝑙
      (4.10) 

The expression above posits a relation between the measured Vs and the flow characteristics as 

modulated by the oil-electrolyte interface/s in the LFS. Consequently, aspects of the surface that promote 

b, e.g., geometry29, air bubbles6, surface interactions,  etc., may all now be utilized for obtaining enhanced 

Vs.   

 

4.5 Conclusion 

In summary, we have indicated that enhanced streaming potentials (Vs) may be obtained through 

electrolyte flows over liquid filled surfaces. It was observed that the Vs was sensitive to the character of the 
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liquid, in terms of the density viscosity, dielectric constant, in the LFS.  Moreover, the magnitude and 

variation of the pressure at the ridge-groove interface seems to be important in determining the enhancement 

of the Vs over that obtained in air-filled grooves and surfaces. The influence of such local perturbations 

merit further study, e.g., the modification of the flow profile close to LFS surface120, due to the unequal 

interface energy between electrolyte-parylene (ridge) and electrolyte-oil (groove). A correlation of the slip 

length (b) to the Vs yields a better understanding of the hydrodynamics inherent in electrokinetic flows. The 

presented study indicates a path forward94 in terms of generating large streaming potentials, through fluid 

flow in microchannels with a hybrid surface – consisting of both solid and oil interfacing with an aqueous 

electrolyte, moving beyond smooth walled nanoscale channels46. Our results and those expected from 

extending our investigations may be utilized to gain greater insights with applications ranging from energy 

conversion46,66,83,85,87 to transport in lab on a chip devices59,60 and nanosystems121.  
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Chapter 5 Tensorial Modulation of Electrokinetic Streaming Potentials on Air 

and Liquid Filled Surfaces 

 

5.1 Abstract 

Textured surfaces, comprised of grooves filled with air, e.g., air-filled surfaces (AFS), or with 

liquid, e.g., liquid-filled surfaces (LFS), significantly influence fluid flows and the related electrokinetic 

streaming potential (Vs). Here, electroosmotic mobility related tensorial effects on the Vs were 

experimentally investigated. A significant modulation of the Vs, as high as 100%, due to transverse pressure 

gradients, was demonstrated. The study yields insights into understanding geometrical effects in electrolyte 

flows with implications to the establishment of local electric fields, energy generation, and biological 

separations. 

 

5.2 Introduction 

Electrokinetic flows, considering the movement of electrolyte relative to another charged surface, 

are important for understanding the effects of charge accumulation and dispersion with applications ranging 

from power generation83–85 to biochemical separations31,86. There are two major related phenomena in such 

flows, under a pressure difference across the microchannel, i.e., (i) where the motion of ions in the electrical 

double layer (EDL) near a charged surface generates an electrical streaming current (Is), and (ii) under open-

electrical circuit conditions – where a potential difference, termed the streaming potential (Vs) is measured, 

due to charge separation. The Vs may be particularly enhanced in micro- and nano-scale fluidics46,83,89, e.g., 

through using  through the overlap of EDLs in nanometer size pores/channels which may enable unipolar 

flow and new battery-like voltage sources. Our group has pioneered the use of liquid filled surfaces (LFS) 

to simultaneously enhance the Vs as well as to reduce frictional drag100,101,123 between the flowing electrolyte 

and the surface. Here, the hydrophobic character of the LFS enhances flow, through inducing a finite slip 
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velocity66, and reduces the potential drop that contributes to a reduction of the Vs. Going beyond such 

preliminary measurements, we discuss in this work, how the AFS/LFS geometry especially the groove 

orientation, may be related to the changes in the Vs, which has been typically considered through the 

Helmholtz-Smoluchowski (H-S) equation, and derived on homogeneous surface8,36: 

                                                               𝑉𝑠 =⁡
𝜀𝜁

𝜂𝑒𝜎
∆𝑃                                                                                      (5.1) 

Here, ⁡𝜀⁡(= 𝜀𝑜𝜀𝑟 , with 𝜀𝑜=8.854∙10-12 C2/Nm2 is the vacuum permittivity and 𝜀𝑟 is the relative 

permittivity) is the permittivity  of the electrolyte, 𝜁 is the zeta potential of the surface, 𝜂𝑒 is the electrolyte 

viscosity, and 𝜎 is the electrolyte conductivity. Relevant to SH surfaces5 is an enhanced ion mobility32, M= 

𝜀𝜁

𝜂𝑒
, predicated on the requirement94,96,124 that the surfaces ensuring fluid slip have a significant charge density 

with a similar magnitude and sign as that of the no-slip surface. However, when the surface is 

uncharged/partially charged, the magnitude of the Vs could be diminished compared to a homogeneously 

charged smooth surface 94,124, as was also confirmed through our own experimental work. The LFS also 

serve to circumvent the ambiguity related to electrolyte-air interfaces through filling liquid (of a definite 

𝜀𝑟 ) into the interstices of patterned surfaces (Figure 5.1) and ensure a definitive charge density. While 

preliminary experiments stated that a 50% enhancement in the Vs over the use of traditionally used air-filled 

surfaces (AFS) could be obtained, such improvement seems to hinge critically on the physico-chemical 

attributes of the filling liquid125, as well as on geometrical parameters such as the orientation of the surface 

with respect to the applied pressure gradient.   

Typically, the influence of geometrical parameters of the substrate has been considerably discussed 

in the context of wetting1, e.g., with respect to anisotropy105, as well as its influence30 on the slip length (b),  

e.g., the relative variation for stripe and post geometries29. A generalization of the underlying concepts to 

describe surface anisotropy through slip and related interfacial mobility tensors107 has yielded insights into  
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the modulation of flows, say, on hydrophobic surfaces112.  Considering that the electroosmotic mobility (M) 

may also be formulated as a tensor, insights into charged liquid flows on heterogenous geometries115 were 

obtained into electroosmotic slip, with respect to modification of fluid flow patterns, such as flow reversal114. 

The degree of alignment of the texture, e.g., misaligned grooves, was shown to generate transverse shear, 

also leading to complex flow patterns and mechanisms for mixing in directions transverse to the nominal 

pressure driven flow axes126. All such intriguing characteristics of flow have been studied from a theoretical 

and computational perspective and are subject to experimental verification.  Moreover, the specific impact 

of such tensorial generalizations, e.g., of the b and M, have not been discussed with respect to their influence 

on the Vs. In this paper, we first report and discuss the modulation of the Vs brought about through groove 

orientation variation of the substrate and studied the rotation angle at which yielded the smallest Vs. 

 

Figure 5.1 (a) Electrolyte flow (driven through a syringe pump yielding a pressure gradient) in a 

microchannel generates an electrokinetic streaming potential (Vs) that may be measured by a voltmeter. 

The patterned parylene substrate either has air in the grooves, i.e., an air-filled surface (AFS), or (b) liquid 

in the grooves, i.e., a liquid filled surface (LFS), SEM image. 

 

5.3 Methods 

Fabrication of Geometrically Textured Surfaces. The groove patterned AFS/LFS used in the 

experiment was fabricated by photolithography and have been previously reported in chapter 3 and 4. Here, 

we report on the obtained results from surfaces constituted from a given groove width, w, groove period, L 

(= d + w), with d as the lateral length of the solid surface, oriented at an angle θ (in the range of −90° to 

90°), with respect to the flow induced by an applied pressure gradient: Figure 5.2, also see right bottom 

inset to Figure 5.3(a). Here, θ is the rotation angle needed to align the coordinate axes (x, y) fixed on the 
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AFS or LFS to the coordinate axes oriented to the frame in which the liquid electrolyte is flowing (x′, y′) 

due to a uniaxial pressure gradient, as indicated in the bottom right inset to Figure 3(a). For sample groove 

orientation parallel to the flow, θ = 90°, while for groove orientation transverse to the flow, θ = 0°. The air 

fraction, ϕa = w/L. For the LFS, the grooves were filled (replacing the air) with oils (e.g., Dupont Krytox 

GPL 104 and castor oil) of low surface energy and immiscible with the aqueous electrolyte (NaCl in 

deionized water). We ensured the robustness of the LFS, i.e., preventing the drainage of the filling liquid 

under external shear flow127 through visual examination of the interface125. Moreover, it was previously 

noted that the filling liquid could be retained indefinitely in the grooves if L was less than a critical length127: 

L∞. As for the tested experimental conditions, the L∞ was estimated to be of the order of millimeters. 

 
Figure 5.2 Differing orientation of the grooves with respect to the flow (from left to right). The grooves 

are oriented (a) perpendicular to the flow (θ = 0°, top), (b) parallel to the flow (θ = 90°, bottom), or (c) at 

an intermediate angle (θ = 45°, middle). The voltages are measured in the horizontal (i.e., through Vx′) and 

vertical (i.e., through Vy′) directions. 

 

Measurement of the Streaming Potential. The Vs experiments were carried out through the 

measurement of the voltage under the flow of electrolyte at a constant flow rate, driven by an applied 

pressure difference (ΔP), using a setup as in the schematic of Figure 5.1(a). Electrolyte (typically, NaCl 
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dissolved in water) of concentration 0.1 mM (chosen for obtaining reliable and maximal Vs) was flowed 

into the microfluidics chamber (of length ∼11.8 cm, width ∼0.9 cm, and height ∼255 μm) using a syringe 

pump. Poiseuille flow conditions were assumed for converting the flow rate to an equivalent pressure. The 

differential pressure was in the range of 200 to 1200 Pa and was calibrated using a manometer (UEI EM152). 

The chosen range of pressure yielded stable and reproducible Vs in the microchannel. The channel surfaces 

were constituted from an upper surface (silicone coated onto polycarbonate) and a bottom test surface, 

which was of the AFS or the LFS type. More experimental details on the voltage measurement and flow 

arrangement have been previously discussed in chapter 3 and 4. The Vs was measured six times at each 

applied pressure and the average value was used. 

 
Figure 5.3 Measured streaming potential (Vs) over an (a) AFS, (b) castor oil filled LFS, and (c) GPL oil 

filled LFS, as a function of applied pressure, at three different orientations of the grooves with respect to 

the flow. The dotted lines are a guide to the eye and connect the measurements. The top left insets in panels 

a−c are a schematic of the grooves. The bottom right inset of (a) defines the θ, the rotation angle needed to 

align the coordinate axes (x, y) fixed on the AFS/LFS grooves to the coordinate axes oriented to the frame 

in which the liquid electrolyte is flowing (x′, y′). While the 𝑉𝑠(θ = 0°) is generally larger for all the AFS and 

LFS, each panel (a−c) represents different relative variation of the Vs at θ = 45° and θ = 90°. 

 

5.4 Results and Discussion 

We consider the anisotropy of electrokinetic effects through the electroosmotic mobility tensor M 

(which is related the ratio of the streaming potential gradient/related electric field: E, to the pressure 

gradient ∆𝑷). i.e., 𝑬 = −𝑴
1

𝜎
∆𝑷. Considering θ as the rotation angle needed to align the coordinate axes 

(x, y) fixed on the AFS or LFS with respect to the axes parallel (x’) and perpendicular (y’) to the flow 

direction - as indicated in Figure 5.3, we obtain128,129:             
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                        𝑴′ = [
𝑀𝑥𝑐𝑜𝑠

2𝜃 +𝑀𝑦𝑠𝑖𝑛
2𝜃 (𝑀𝑥 −𝑀𝑦)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

(𝑀𝑥 −𝑀𝑦)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑀𝑦𝑐𝑜𝑠
2𝜃 +𝑀𝑥𝑠𝑖𝑛

2𝜃
]                                     (5.2) 

We then obtain the electric field in the x’ direction as: 

                                     𝐸𝑥′ = −
1

𝜎
[(𝑀𝑥𝑐𝑜𝑠

2𝜃 +𝑀𝑦𝑠𝑖𝑛
2𝜃)

𝑑𝑃

𝑑𝑥′
+ (𝑀𝑥 −𝑀𝑦)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑑𝑃

𝑑𝑦′
]               (5.3) 

The corresponding Vs, over a groove period (L), is the corresponding integral of the Ex’:  

                             𝑉𝑠 = ∫
1

𝜎
[(𝑀𝑥𝑐𝑜𝑠

2𝜃 +𝑀𝑦𝑠𝑖𝑛
2𝜃)

𝑑𝑃

𝑑𝑥′
+ (𝑀𝑥 −𝑀𝑦)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑑𝑃

𝑑𝑦′
]𝑑𝑥′

𝐿

0
                  (5.4) 

For instance, at representative values of θ, we obtain: 

                           𝑉𝑠(0°) = ∫
1

𝜎
𝑀𝑥

𝑑𝑃

𝑑𝑥′
𝑑𝑥′

𝐿

0
                                                        (5.5a) 

                                      𝑉𝑠(45°) = ∫
1

𝜎
[
1

2
(𝑀𝑥 +𝑀𝑦)

𝑑𝑃

𝑑𝑥′
+

1

2
(𝑀𝑥 −𝑀𝑦)

𝑑𝑃

𝑑𝑦′
] 𝑑𝑥′

𝐿

0
                            (5.5b)                                                                                                                                                                                  

                                                             𝑉𝑠(90°) = ∫
1

𝜎
𝑀𝑦

𝑑𝑃

𝑑𝑥′
𝑑𝑥′

𝐿

0
                                                        (5.5c) 

Several interesting aspects are evident through Eqns. 5.2 - 5.4, e.g., the use of a pressure gradient 

implying128 components of both longitudinal and transverse to the flow direction - from tensorial 

considerations, the fluid  flux transforms covariantly130, i.e., in the same way as the basis vectors, aligning 

the flow with the grooves131. Due to the existence of the side walls of the channel, the consequent 

recirculation128,131 yields transverse components, with either positive/negative gradients 
𝑑𝑃

𝑑𝑦′
. Since the 

experimental applied pressure is along x’, the generated transverse 
𝑑𝑃

𝑑𝑦′
 will be positive. From an 

electrokinetic point of view, only when Mx=My, would the off-diagonal terms in Eqn. (5.2) be zero and 

yield a Vs (θ = 45°) as the arithmetic mean of the Vs obtained for θ = 0° and θ = 90°. For instance, we obtain:  

                            
1

2
[𝑉𝑠(0°) + 𝑉𝑠(90°)] − 𝑉𝑠(45°) = −

𝐿

2𝜎
(𝑀𝑥 −𝑀𝑦)

𝑑𝑃

𝑑𝑦′
                                  (5.6)   



60 

 

 

Figure 5.4 Calculated eigenvalues of the electrokinetic mobility tensor (M), i.e., Mx and the My, see eq 2 

in the text, estimated from streaming potential (Vs) measurements for an AFS, castor oil filled LFS, and 

GPL oil filled LFS (at 0.1 mM electrolyte concentration, σ = 0.001 S/m, 
𝑑𝑃

𝑑𝑥′
 = 7627 Pa/m). 

 

Such considerations may be used to explain the related experimental observations in Figure 5.3. 

The estimates of the Mx and the My were estimated experimentally through measuring the streaming 

potential for two orientations of the grooves with respect to the flow direction, i.e., Mx from Vs (θ = 0°) 

using Eqn. 5.5(a), and My from Vs (θ = 90°) using Eqn. 5.5©. The respective values are listed in Figure 

5.4. Since 𝑀𝑥 −𝑀𝑦 is negative, 
𝑑𝑃

𝑑𝑦′
 is positive, the 𝑉𝑠 of 45° is smaller than the arithmetic mean of that of 

0° and 90°.       
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Figure 5.5. Variation of the Vs with groove orientation angle (θ) for (a) an AFS (θmin ≈ 45.9° with 

corresponding Vs,min ≈ 25.1 mV) (b) castor oil filled LFS (θmin ≈ 52.2° with corresponding Vs,min ≈ 10.8 mV), 

and (c) GPL oil filled LFS (θmin ≈ 67.5° with corresponding Vs,min ≈ 18.9 mV). The Vs was measured at 900 

Pa with the flow of 0.1 mM NaCl. Tensorial effects and transverse pressure gradients were invoked to 

explain the observed variations and the theoretical Vs minima (orange star). 

 

Actually, 
𝑑𝑃

𝑑𝑦′
 is a function of 𝜃 and is in the form128 of 

𝑑𝑃

𝑑𝑦′
(𝜃) = 𝑐 ∗ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃. The values of 

𝑑𝑃

𝑑𝑦′
 

at 45° was estimated using Eqn. (5.6), based on the obtained values of Mx and My and the measured Vs at 

θ = 0°, 45° and 90°, and 
𝑑𝑃

𝑑𝑦′
(𝜃) could be obtained. The dependence of Vs on 𝜃 was derived via plugging 

𝑑𝑃

𝑑𝑦′
(𝜃) into Eqn. (5.4). It was observed that the variation of the Vs (𝜃) seems to exhibit a minimum, say at 

θmin shown in Figure 5.5. From Table I, Eqns. (4) and (5), and a negative 
𝑑𝑃

𝑑𝑥′
 (as the pressure decreases in 

the flow direction), it may be deduced that such variation would essentially arise from the 
𝑑𝑃

𝑑𝑦′
 term – which 

may be negative or positive and is dependent on 𝜃. It was found that the θmin was less sensitive to a change 

of Mx or My but is decreasing with 
𝑑𝑃

𝑑𝑦′
 and is set to 45° when 

𝑑𝑃

𝑑𝑦′
 is large enough, and 𝑉𝑠(𝜃) exhibits a 

𝑠𝑖𝑛2(2𝜃) form. This is because that the Vs(𝜃) is composed of the diagonal term contribution and off-

diagonal term contribution. The diagonal term in equation (5.5) is ∫ [
1

𝜎
(𝑀𝑥𝑐𝑜𝑠

2𝜃 +𝑀𝑦𝑠𝑖𝑛
2𝜃)

𝑑𝑃

𝑑𝑥′
]𝑑𝑥′

𝐿

0
 

which monotone decreases with θ, while the off-diagonal term ∫ [
1

𝜎
(𝑀𝑥 −𝑀𝑦)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑑𝑃

𝑑𝑦′
]𝑑𝑥′

𝐿

0
 is 

minimum at θ = 45°. When the magnitude of 
𝑑𝑃

𝑑𝑦′
 increases, the off-diagonal term will become more 

dominant, and θmin will approach to 45° with increasing 
𝑑𝑃

𝑑𝑦′
. 
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5.5 Conclusion 

In summary, we have indicated geometrically induced modulation of the Vs obtained through 

electrolyte flows over specifically oriented air and liquid filled surfaces, described through tensorial 

considerations. Such engineering could find application in the establishment of local potentials and electric 

fields. Further experiments on electrolyte flow in microchannels with engineered hybrid surfaces would 

yield insights into electrokinetics beyond smooth walled channel flow. Such tunability of the Vs arises may 

be related to a variation in the local and effective slip characteristics as well as the surface charge density 

of the AFS and LFS and the presented work offers new avenues into exploring such effects. Moreover, 

related investigations would yield insights into the generation of transverse pressure gradients due to 

anisotropic surfaces, surface heterogeneities and roughness, with implications to the efficiency of energy 

conversion and lab on a chip devices. 
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Chapter 6 Future Work 

 

Though there is a long history for electrokinetics, the development of micro/nano fabrication makes 

electrokinetic phenomenon revive and there are still a lot to be investigated, both in fundamental research 

and practical application. Especially, the electrokinetics on liquid-filled surface is a quite new multi-physics 

coupling phenomenon, which make it worthy to continue to study this phenomenon. Here, I proposed the 

following future directions.  

Influences of geometrical factors of liquid-filled surfaces on 𝑽𝒔. The geometrical parameters, 

such as groove width, groove depth and groove fraction, play an important role in tuning the fluid slip 

characters and zeta potential (ζ) of LFS, which will influence the generated 𝑉𝑠. I tried to vary the groove 

width, groove depth and groove fraction with different values and measured the corresponding 𝑉𝑠. Generally 

speaking, the 𝑉𝑠 of LFS increases with groove depth and decreases with groove width and groove fraction. 

However, it is difficult to find a quantitative relationship between the measured 𝑉𝑠 and these geometrical 

parameters. In the future, simulation and theoretical analysis will be performed to find the quantitative 

relationship. 

Electrokinetics on LFS with 2D pattern. Till now, all the work on electrokinetics on LFS focused 

on the 1D groove geometry. 2D geometries, such as post and hole geometry, have different fluid slip 

characteristics compared with groove pattern. For example, the fluid slip for strip geometry scales with 

solid fraction as29 𝑏𝑠𝑡𝑟𝑖𝑝~− 𝐿𝑙𝑜𝑔(𝜙𝑠), while the post geometry scales as29 𝑏𝑝𝑜𝑠𝑡~
𝐿

√𝜙𝑠
. In addition, the 

interfacial fluid dynamics and robustness of the LFS will also be changed. In post geometry, the filled oil 

in the interstices will be interconnected and can flow in two directions, while for hole geometry, the filed 

oil inside the holes will be isolated and confined in the holes. The difference in oil movement between 

groove, post and hole geometries will greatly influence the electrolyte slip, electrolyte-oil interface 
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dynamics, the robustness of LFS and the induced electrokinetics. In the future, expansion to electrokinetics 

on LFS with 2D geometry will be performed both experimentally and theoretically to investigate the 

corresponding fluid slip, streaming potential, etc, and those results will be compared with those of 1D 

geometry. 

Nanoscale electrokinetics. I have pioneered in studying electrokinetic flow in microscale in my 

Ph. D period. The nanofluidic phenomena will be far different from microscale flow due to the dominant 

surface force effects and electrical double layer overlap. Nano electrokinetics is important in energy 

conversion, single molecule analysis and water purification. It may be possible to obtain voltages of the 

order of 1 volt through the use of nanoscale fluid channels. The fluid transport in LFS composed 

nanochannel and interfacial fluid dynamics induced by the effects of liquid-liquid/solid interface energy of 

the hybrid LFS will be investigated both experimentally and theoretically. In addition, I would also like to 

theoretically study the ion transport in the electrolyte flowing over LFS with nonhomogeneous surface 

charge density and interface energy. The streaming potential and energy conversion efficiency will also be 

experimentally measured and theoretically analyzed based on the ion transport behavior to provide 

theoretical guidance for designing electrokinetic power source. Besides the fundamental study of the 

underlying physics of nano electrokinetics on LFS, the practical nanoscale electrokinetics based power 

source will be developed and the energy conversion efficiency will be optimized based on the theoretical 

guidance to facilitate the practical application of electrokinetics. 

Electricity harvesting through solar desalination process. A novel solar heat localization 

method using porous solar absorber has been used to enhance the evaporation efficiency. The aim has been 

to utilize solar energy in novel ways for water purification and desalination. Porous solar absorbers are 

usually composed by an array of micro/nano channels and EDL can form at the interface of salt water and 

solar absorber inner wall surfaces. Through nanoscale channels or tuning the surface charge density, only 

positive or negative ions can go through the channels. This charge separation process, which is similar to 

the working mechanism of electrokinetics, can prevent the formation of salt crystal and generate electricity 
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at the same time. Due to the imbalance of positive/negative ion concentration between the bottom and top 

sides of the porous solar absorber, the desalination system can generate electricity to harvest the 

electrokietic energy at the same time which would make better use of the incident solar energy. 
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