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ABSTRACT: It is shown that the magnitude of the streaming potential (Vs) can be significantly enhanced from ∼0.02 V to as much
as ∼1.6 V, in electrokinetic flows through microchannels. This was done through flows on liquid-filled surfaces, where the grooves
were filled with oils of viscosity in the range 30−3000 mPa·s. The presence of immiscible oils and the improved slip are both factors
that could significantly increase the Vs. The analytical relationship between streaming potential and filled liquid viscosity was derived
and verified through corresponding experimental results. The work yields novel insights into complex electrolyte flows and indicates
avenues for more efficient energy harvesting.

■ INTRODUCTION

The motion of electrolyte fluid relative to a surface1,2 is of
significant relevance for insight into the effects of charge
accumulation as well as dispersion and may be widely
applicable to electrical power generation3−5 as well as
biological processes.6,7 The significant electrokinetic effects,
driven by the pressure gradient along the microchannel,
incorporate (1) an electrical streaming current (Is), due to ion
movement inside an electrical double layer (EDL) proximate
to the channel surface, and (2) a voltage (the electrokinetic
streaming potential Vs) under open electrical circuit con-
ditions, due to charge separation between the ends of the
channel. The Vs may be further increased through deploying
nanometer scale fluidic channels,3,8,9 e.g., through the
convergence of EDLs from the top and bottom surfaces,
enabling flow of ions of a particular polarity, as in batteries.
Fluid flow over hydrodynamically smooth surfaces with

assumed no-slip conditions nominally yields low Is and Vs. It
was suggested that improved mobility, M, may be harnessed
using patterned10,11 or superhydrophobic (SH) surfaces,12 in a
large range of Reynold number (Re) flows. Pertinent to SH

surfaces12 is the ion mobility,13 = εζ
η

M
e
, where ε (=ε0εr; ε0 =

8.854 × 10−12 C2/N m2 is the permittivity of vacuum and εr is
the dielectric constant) is the overall permittivity of the

electrolyte, ζ is the magnitude of the zeta potential, and ηe is
the electrolyte viscosity. It requires14−16 that the surfaces
promoting the liquid slip have a finite charge density, of related
value to that of a no-slip surface. Traditionally, SH surfaces
have been constituted through roughness on the fluid slipping
surface17−19 or through lithographic patterning,20,21 which in
either case exploits air in the surface to promote slip. In the
context of electrokinetic flows, air would not be useful as it was
conclusively stated that only a charged liquid−air interface
would, in principle, increase the Vs.

14−16 There is indeed
considerable ambiguity as to whether charge exists on the air−
electrolyte interface, e.g., due to residual OH− ions.16

Consequently, when the slipping surface is even partially
devoid of charges, the Vs could be lower compared to the
streaming potential that could be obtained from a homoge-
neously charged smooth surface,14,15 and such assertions were
indeed validated previously.22
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As an alternative to conventional surfaces, where the grooves
are comprised of air, liquid-filled surfaces (LFS), fabricated by
oil filled into interstices of rectangular grooves on the surface,
were studied in this work. The advantages of an LFS,
constituted from liquid as well as the intervening hydrophobic
solid surface, are that a finite charge density would be ensured
at the slipping surface in addition to a finite slip velocity.23 The
frictional drag24−26 between the flowing electrolyte and a solid
surface could also be diminished. Figure 1a is a schematic of
the flow (indicating the slip velocity us and related slip length
b), while Figure 1b shows the electrokinetic flow patterns, over
the LFS. Moreover, previous work22 introducing the LFS for
enhancing Vs has shown that a larger than 2-fold increase in the
Vs may be obtained through the use of specific oils in the LFS.
While finite charge at the electrolyte−oil interface may provide
a possible reason for the increase, the rationale for the choice
of the filling liquid, say, with respect to the fluid slip has been
unclear. Additionally, filled oil properties27 and groove
orientation28 may also be influential. Here, we discuss specific
correlations between the viscosity of the filling liquid in the
LFS with the Vs through analysis and experimental results. We
aim to provide a deeper understanding and new perspectives
on electrokinetic flows through such investigations.

■ EXPERIMENTAL SECTION
Fabrication and Characterization of LFS. The LFS was

fabricated by infiltrating a series of oils with systematically varying
viscosities into lithographically groove patterned channels. The bare
channel fabrication and related details have been reported.27 Here, we
show the Vs modulations obtained through related filling liquid
variations, from an LFS with a fixed groove width (w = 18 μm) and
period L (=w + d) = 36 μm. We define a groove fraction, ϕ = w/L, to
characterize the patterned surfaces. The ηoil was varied over 2 orders

of magnitude (in the range 30−3000 mPa·s), as indicated in Table 1,
for probing the electrokinetic potentials. The oils (Dupont Krytox

GPL), were found to be not miscible with the NaCl electrolyte. GPL
(general purpose lubricant) represents a family of widely used
perfluorinated oils known to be inert and stable over a wide
temperature range. The oil spillage out of the grooves in the pattern
was considered negligible due to the enhanced surface tension forces,
and was also verified through microscopy.27

Streaming Potential Vs Measurement. The Vs was monitored
in a microfluidics-based setup, with a microchannel (∼250 μm in
height, a length of 11.8 cm, and a width of 0.9 cm) using salt water
(with NaCl dissolved in water at a concentration of 0.1 mM) under
pressure driven Poiseuille flow (Figure 1c and Figure 2). The upper
surface of the channel was silicone coated onto polycarbonate, while
the lower surface was the LFS. The two surfaces in the microchannel
were placed at a fixed height using a silicone rubber spacer, and
electrodes (Ag/AgCl) at either end were deployed to measure the
potential difference for the Vs. The pressure drop (ΔP) along the
channel length was varied in the 200−1200 Pa range, monitored (UEI
EM152 manometer), and checked to be in correspondence with the
Poiseuille flow. The chosen pressure range yielded reliable and
reproducible Vs values. Experiments were performed with the flow
direction perpendicular to the grooves considering the stability of the
LFS, i.e., whether the filling oil would experience shear-induced
drainage under external flow.29 The liquid filling the LFS could be

Figure 1. Electrokinetic flows under Poiseuille flow (with a difference of the pressures between the entrance and exit of the channel, ΔP = P1 − P2)
on the liquid-filled surfaces (LFS). The (a) finite slip velocity (us) at the interface, along with (b) a charged electrolyte−oil interface, ensures an
enhanced streaming potential (Vs = V1 − V2). (c) Experimental measurement of the Vs (related to the measured voltage difference V, across the
electrodes at the end) ensuing from pressure driven flow of salt water. (d) Image, based on scanning electron microscopy (SEM), of LFS filled by
GPL oil.

Table 1. Viscosity of the Oils Deployed in the LFS

oil ηoil (mPa·s)

GPL 101 33
GPL 102 73
GPL 104 341
GPL 105 1012
GPL 107 2993
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contained indefinitely inside the grooves in such a configuration,28 if
the groove period was smaller compared to the critical length scale29

L∞, inversely proportional to the w/h ratio. For the given
experimental conditions, L∞ was at the millimeter scale, and it was
assumed from such consideration as well from SEM observations after
the experiments (Figure 1d) that the LFS are stable. The Vs was
monitored six times for each particular pressure, for estimating the
mean and the deviation.

■ RESULTS AND DISCUSSION
Influence of the Slip Length in Modulating Stream-

ing Potentials. Electrokinetic flow of an electrolyte, under a
pressure difference (ΔP), has been conventionally modeled
through the Helmholtz−Smoluchowski (H−S) relation, which
is of the form30,31 = Δ

σ
V PM

s , with σ as the electrolyte

conductivity. The relation is valid for homogeneous and
smooth surfaces. Further assumptions32 underlying the relation
include neglecting surface (substrate) conduction and very thin
EDL thickness.33 Also incorporated is the no-slip boundary
condition,34 with a nonzero flow up to a definitive distance
(the shear plane boundary), away from the substrate surface,
into the liquid electrolyte. ζ is considered to the electrical
potential at the shear plane.31,32 To date, Vs has mostly been
considered through flows over nonrough surfaces (where the
mean roughness scale is smaller compared to the Debye length
λD), and consequently the use of the H−S relation implies
millivolt levels of the measured Vs;

30 e.g., with ΔP ∼ 1000 Pa,
and 0.1 mM NaCl, εr ∼ 80, ηe ∼ 10−3 Pa·s, ζ ∼ 25 mV, σ ∼
10−3 S/m, and Vs ∼ 18 mV.

Molecular dynamics (MD) modeling and simulations35 have
indicated that slip could be responsible for the mobilization of
the Stern layer and, consequently, enhance ζ. Due to the slip,
the shear plane would be moved closer to the surface. As the
magnitude of the electrical potential is exponentially
diminished away from the surface, a proximate shear plane
may yield a larger ζ with increased Vs, per the H−S relation.
Alternate to the no-slip boundary condition at the surface (y =
0) would be a condition (corresponding to Navier slip):

= =
∂ =

∂
u y b

u y
y

( 0)
( 0)

s

with b the slip length,36,37 and us the slip velocity (Figure 1a).
The Vs will be enhanced over that predicted through the H−S
relation, by a factor

λ
beff

D
, where beff is the effective slip length

an average local slip length30i.e.

εζ
η σ λ

= Δ +
i
k
jjjjj

y
{
zzzzzV P

b
1s

e

eff

D (1)

For a rectangular groove patterned surface, beff in directions
parallel (i.e., beff

|| ), and that perpendicular (beff
⊥ ) to the

grooves38,39 may be estimated through the following relations:

π
=

+ +

πϕ

π
πϕ πϕ

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÄ

Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( )
( ) ( )

b
L ln sec

1 ln sec tanL
b

eff
2

2 2 (2)

π
=

+ +

πϕ

π
πϕ πϕ

⊥

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÄ

Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

( )
( ) ( )

b
L

2

ln sec

1 ln sec tanL
b

eff
2

2 2 2 (3)

L (=w + d) is the groove pattern period with w as the groove
width and d constituting the longitudinal length of the solid
part of the LFS; β= η

η
b w e

oil
is the local constant slip length and

ηoil is the viscosity of the liquid (oil) in the grooves.38

Generally, β has been modeled with different values for parallel
and transverse grooves,38 i.e.

Figure 2. Experimental realization for measuring the streaming
potential Vs. The top surface of the microchannel was separated by a
silicone rubber spacer from the bottom surface to yield a fixed height.
Electrodes were placed in the reservoirs at two ends of the channel to
measure the potential differences/voltage.

Figure 3. (a) Measured streaming potential (Vs) on liquid filled surface (LFS) using a series of GPL oils, of varying viscosity, with 0.1 mM NaCl as
the electrolyte solution scales linearly with the applied pressure drop. (b) Comparison of experimentally measured Vs (when the pressure drop ΔP
= 1130 Pa) to the analytical relationship of eq 4.
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β β= =⊥

i
k
jjj

y
{
zzz( )

q q

erf
and

erf

4

q h

w

x

q h

w

y

x y

where h is the groove depth, qx ≃ 3.1, and qy ≃ 2.17. When h/
w≫ 1, as in our case, with h ∼ 100 μm and w ∼ 18 μm, β|| and
β⊥ may be estimated to be ∼0.32 and ∼0.12, respectively.
Consolidating the above relationships, it was derived that

εζ
η σ η

= Δ +
+

i

k
jjjjj

y

{
zzzzzV P

m
n

1
1s

e oil (4)

Here, m and n are two groove geometry-dependent
parameters, i.e., for parallel grooves

π λ

π βη
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=
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ln sec tan

2

D
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while for transverse grooves

π λ

π βη

=

=
+
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,

2
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2

D

2 2
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The aim was to experimentally verify eq 4 with an explicit
consideration of the nature of the LFS, to yield insights into
the influence of surfaces on electrokinetic behavior.
Pressure Induced Modulation of the Vs on LFS

Constituted from Oils of Different Viscosities. The
measured Vs values as a function of ΔP are in general accord
with the H−S relation, through the obtained linear variations
for different LFS (Figure 3a). For 0.1 mM NaCl solution, with
a Debye length λD ∼ 30 nm, we estimate, from eq 6, m⊥ = 66.2
and n⊥ = 2.3. The ζ of LFS was estimated to be ∼30.9 mV.
Inserting the numerically obtained values into eq 4 with ΔP =
1130 Pa, we obtain the following relation between Vs and ηoil
for the LFS:

η
= +

+ ·

i

k
jjjjj

y

{
zzzzzV (mV) 24.15 1

66.19
1 2.34 (mPa s)s

oil (7)

A comparison of the experimentally obtained Vs with the
analytically evaluated eq 7 is indicated in Figure 3b and shows
excellent agreement (R2 = 0.99). Based on such an agreement,
we predict an even larger Vs with smaller ηoil. Indeed, use of
aqueous media (with η ∼ 1 mPa·s) or hydrocarbon-based
liquids (with η ∼ 0.2 mPa·s) would yield Vs values of the order
of 0.5 and 1.1 V, respectively. The relationship also allows us to
predict an upper limit to the Vs, obtained when η tends to zero,
of ∼1.6 V, approaching the voltages that could be obtained
from conventional batteries.

Modeling Fluid Flow over the LFS. We used finite
element methodologies (FEM), deploying the incompressible
Navier−Stokes equations, to model the fluid flow over LFS
with ηoil in the groove over the range of values in Table 1 based
on a two-phase flow (laminar) level set model, over a given
groove. The level set method (with a concomitant function ϕ)
was used to trace the electrolyte−oil interface, interpolating
between the electrolyte (with ϕ = 0) and the oil (with ϕ = 1).
The interface was located at where ϕ = 0.5. At the interface,
the local density ρl and dynamic viscosity ηl are determined
based on the smooth step level set function and are equal to

ρ ρ ρ ρ ϕ= + −( )l w o w (8)

η η η η ϕ= + −( )l w o w (9)

ρw is the water density and ηw is the dynamic viscosity of
water, while ρo and ηo are the corresponding parameters for the
oil. We used a creeping flow model which neglects inertial
terms and sets the gravity body force to zero. A no-slip
condition was used at the ridge surface−electrolyte boundary,
and a Navier slip boundary condition was used at the oil−
electrolyte boundary. The mass and momentum transport here
were considered through the Navier−Stokes equations. Here,
the surface tension dominates over the viscous forces, as may
also be deduced from an estimate of ∼10−3 for the capillary
number (Ca). Consequently, the flows are not expected to
significantly perturb the flatness of the electrolyte−oil
interface.40 In our simulations, we used (1) rounding the
sharp corner as well as (2) adaptive mesh methods to refine
the mesh grids.

Figure 4. (a) Simulated flow velocity near the grooves for oil (GPL 101) filled liquid filled surfaces (LFS) with groove height h = 60 μm, groove
width w = 18 μm. (b) Velocity profile between the liquid−oil interface (bottom) and the upper surface of the microchannel; the inset indicates
nonzero slip, i.e., a finite us, at the liquid−oil interface. (c) Simulated slip length (left axis) and slip velocity (right axis) scale inversely as the oil
viscosity (at ΔP = 1130 Pa).
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When electrolyte flows above the LFS, the shear stress at the
electrolyte−oil interface was implicated in the generation of
vortices as shown in Figure 4a. The electrolyte flow in the
channel was considered with nonzero slip velocity (us),

41 as in
Figure 4b. The us and the slip length were inversely
proportional to ηoil as indicated in Figure 4c.
The related shear rate was estimated from the velocity

profile, and a corresponding fluid slip length (bsim) was
obtained from the Navier slip boundary condition. The bsim
was compared to the theoretical estimate, i.e., with btheo
( β= η

η
w e

oil
), in Table 2, and close correspondence was seen.

■ CONCLUSIONS
The proposed work has indicated that streaming potentials, as
large as 1.6 V, may possibly be obtained through the use of
specifically structured surfaces, such as the LFS, in comparison
to the typical values of ∼0.02 V using smooth surfaces or even
conventional superhydrophobic surfaces. It was shown that the
viscosity of the infiltrating oil in the LFS is critical to the
obtained Vs. An analytically derived relationship was confirmed
experimentally and has been used to predict the limits of the
Vs. The LFS, in addition to enhancing the fluid slip velocity
and slip length, provides a charged electrolyte−oil interface
which may contribute to the plausible orders of magnitude
enhancement of the Vs. While it was previously indicated
that9,42 that overlap of the EDLs in nanoscale channels may be
necessary for boosting the magnitude of the electrokinetic
potential, ensuring smooth flow and maintaining steady flow
rate are constraints for practical implementation.43 The
presented work provides an alternative for achieving large Vs
at the microscale. With such plausibility, our results provide
much motivation for aiming at more detailed understanding of
electrokinetics on hybrid/nonhomogeneous surfaces and open
new perspectives for guiding multiphase flow and related
biology and energy-harvesting applications.
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